def testOutputSizeWithStrideOneValidPadding(self):
num_filters = 32
input_size = [5, 10, 12, 3]
expected_size = [5, 12, 14, num_filters]
images = random_ops.random_uniform(input_size, seed=1)
output = layers_lib.conv2d_transpose(
images, num_filters, [3, 3], stride=1, padding='VALID')
self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
with self.test_session() as sess:
sess.run(variables_lib.global_variables_initializer())
self.assertListEqual(list(output.eval().shape), expected_size)
python类conv2d_transpose()的实例源码
layers_test.py 文件源码
项目:DeepLearning_VirtualReality_BigData_Project
作者: rashmitripathi
项目源码
文件源码
阅读 25
收藏 0
点赞 0
评论 0
layers_test.py 文件源码
项目:DeepLearning_VirtualReality_BigData_Project
作者: rashmitripathi
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def testOutputSizeWithStrideTwoValidPadding(self):
num_filters = 32
input_size = [5, 9, 11, 3]
expected_size = [5, 19, 23, num_filters]
images = random_ops.random_uniform(input_size, seed=1)
output = layers_lib.conv2d_transpose(
images, num_filters, [3, 3], stride=[2, 2], padding='VALID')
self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
self.assertListEqual(list(output.get_shape().as_list()), expected_size)
with self.test_session() as sess:
sess.run(variables_lib.global_variables_initializer())
self.assertListEqual(list(output.eval().shape), expected_size)
layers_test.py 文件源码
项目:DeepLearning_VirtualReality_BigData_Project
作者: rashmitripathi
项目源码
文件源码
阅读 19
收藏 0
点赞 0
评论 0
def testOutputSizeWith1x1StrideTwoSamePadding(self):
num_filters = 1
input_size = [1, 1, 1, 1]
expected_size = [1, 2, 2, num_filters]
images = random_ops.random_uniform(input_size, seed=1)
output = layers_lib.conv2d_transpose(
images, num_filters, [2, 2], stride=[2, 2], padding='SAME')
self.assertListEqual(list(output.get_shape().as_list()), expected_size)
with self.test_session() as sess:
sess.run(variables_lib.global_variables_initializer())
self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
self.assertListEqual(list(output.eval().shape), expected_size)
layers_test.py 文件源码
项目:DeepLearning_VirtualReality_BigData_Project
作者: rashmitripathi
项目源码
文件源码
阅读 25
收藏 0
点赞 0
评论 0
def testOutputSizeWith1x1StrideTwoValidPadding(self):
num_filters = 1
input_size = [1, 1, 1, 1]
expected_size = [1, 2, 2, num_filters]
images = random_ops.random_uniform(input_size, seed=1)
output = layers_lib.conv2d_transpose(
images, num_filters, [2, 2], stride=[2, 2], padding='VALID')
with self.test_session() as sess:
sess.run(variables_lib.global_variables_initializer())
self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
self.assertListEqual(list(output.eval().shape), expected_size)
layers_test.py 文件源码
项目:DeepLearning_VirtualReality_BigData_Project
作者: rashmitripathi
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def testOutputSizeWith2x2StrideTwoSamePadding(self):
num_filters = 1
input_size = [1, 2, 2, 1]
expected_size = [1, 4, 4, num_filters]
images = random_ops.random_uniform(input_size, seed=1)
output = layers_lib.conv2d_transpose(
images, num_filters, [2, 2], stride=[2, 2], padding='SAME')
with self.test_session() as sess:
sess.run(variables_lib.global_variables_initializer())
self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
self.assertListEqual(list(output.eval().shape), expected_size)
layers_test.py 文件源码
项目:DeepLearning_VirtualReality_BigData_Project
作者: rashmitripathi
项目源码
文件源码
阅读 19
收藏 0
点赞 0
评论 0
def testOutputSizeWithStride2x1(self):
num_filters = 1
input_size = [1, 3, 2, 1]
expected_size = [1, 6, 5, num_filters]
images = random_ops.random_uniform(input_size, seed=1)
output = layers_lib.conv2d_transpose(
images, num_filters, [2, 4], stride=[2, 1], padding='VALID')
with self.test_session() as sess:
sess.run(variables_lib.global_variables_initializer())
self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
self.assertListEqual(list(output.eval().shape), expected_size)
layers_test.py 文件源码
项目:DeepLearning_VirtualReality_BigData_Project
作者: rashmitripathi
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def testOutputSizeWithStride2x4(self):
num_filters = 1
input_size = [1, 3, 2, 1]
expected_size = [1, 6, 8, num_filters]
images = random_ops.random_uniform(input_size, seed=1)
output = layers_lib.conv2d_transpose(
images, num_filters, [2, 4], stride=[2, 4], padding='VALID')
with self.test_session() as sess:
sess.run(variables_lib.global_variables_initializer())
self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
self.assertListEqual(list(output.eval().shape), expected_size)
layers_test.py 文件源码
项目:DeepLearning_VirtualReality_BigData_Project
作者: rashmitripathi
项目源码
文件源码
阅读 27
收藏 0
点赞 0
评论 0
def testOutputSizeWithStride2x5(self):
num_filters = 1
input_size = [1, 3, 2, 1]
expected_size = [1, 6, 10, num_filters]
images = random_ops.random_uniform(input_size, seed=1)
output = layers_lib.conv2d_transpose(
images, num_filters, [2, 4], stride=[2, 5], padding='VALID')
with self.test_session() as sess:
sess.run(variables_lib.global_variables_initializer())
self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
self.assertListEqual(list(output.eval().shape), expected_size)
layers_test.py 文件源码
项目:DeepLearning_VirtualReality_BigData_Project
作者: rashmitripathi
项目源码
文件源码
阅读 31
收藏 0
点赞 0
评论 0
def testOutputSizeRandomSizesAndStridesValidPadding(self):
np.random.seed(0)
max_image_size = 10
for _ in range(10):
num_filters = 1
input_size = [
1, np.random.randint(1, max_image_size),
np.random.randint(1, max_image_size), 1
]
filter_size = [
np.random.randint(1, input_size[1] + 1),
np.random.randint(1, input_size[2] + 1)
]
stride = [np.random.randint(1, 3), np.random.randint(1, 3)]
ops.reset_default_graph()
graph = ops.Graph()
with graph.as_default():
images = random_ops.random_uniform(input_size, seed=1)
transpose = layers_lib.conv2d_transpose(
images, num_filters, filter_size, stride=stride, padding='VALID')
conv = layers_lib.conv2d(
transpose, num_filters, filter_size, stride=stride, padding='VALID')
with self.test_session(graph=graph) as sess:
sess.run(variables_lib.global_variables_initializer())
self.assertListEqual(list(conv.eval().shape), input_size)
layers_test.py 文件源码
项目:DeepLearning_VirtualReality_BigData_Project
作者: rashmitripathi
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def testWithScope(self):
num_filters = 32
input_size = [5, 9, 11, 3]
expected_size = [5, 19, 23, num_filters]
images = random_ops.random_uniform(input_size, seed=1)
output = layers_lib.conv2d_transpose(
images, num_filters, [3, 3], stride=2, padding='VALID', scope='conv7')
self.assertEqual(output.op.name, 'conv7/Relu')
with self.test_session() as sess:
sess.run(variables_lib.global_variables_initializer())
self.assertListEqual(list(output.eval().shape), expected_size)
layers_test.py 文件源码
项目:DeepLearning_VirtualReality_BigData_Project
作者: rashmitripathi
项目源码
文件源码
阅读 19
收藏 0
点赞 0
评论 0
def testDeconvWithoutBiasesProducesConv2dTranspose(self):
num_filters = 32
input_size = [5, 9, 11, 3]
expected_size = [5, 19, 23, num_filters]
stride = 2
padding = 'VALID'
with self.test_session() as sess:
images = random_ops.random_uniform(input_size, seed=1)
output_deconv = layers_lib.conv2d_transpose(
images,
num_filters, [3, 3],
stride=stride,
padding=padding,
activation_fn=None,
scope='conv7')
weights = variables.get_variables_by_name('conv7/weights')[0]
output_conv2d_transpose = nn_ops.conv2d_transpose(
images,
weights,
expected_size, [1, stride, stride, 1],
padding=padding)
sess.run(variables_lib.global_variables_initializer())
output_deconv, output_conv2d_transpose = sess.run(
[output_deconv, output_conv2d_transpose])
self.assertTrue(
np.isclose(output_deconv, output_conv2d_transpose, 1e-5, 1e-5).all())