python类stderr()的实例源码

getpass.py 文件源码 项目:kinect-2-libras 作者: inessadl 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _raw_input(prompt="", stream=None, input=None):
    # A raw_input() replacement that doesn't save the string in the
    # GNU readline history.
    if not stream:
        stream = sys.stderr
    if not input:
        input = sys.stdin
    prompt = str(prompt)
    if prompt:
        stream.write(prompt)
        stream.flush()
    # NOTE: The Python C API calls flockfile() (and unlock) during readline.
    line = input.readline()
    if not line:
        raise EOFError
    if line[-1] == '\n':
        line = line[:-1]
    return line
__init__.py 文件源码 项目:kinect-2-libras 作者: inessadl 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def handleError(self, record):
        """
        Handle errors which occur during an emit() call.

        This method should be called from handlers when an exception is
        encountered during an emit() call. If raiseExceptions is false,
        exceptions get silently ignored. This is what is mostly wanted
        for a logging system - most users will not care about errors in
        the logging system, they are more interested in application errors.
        You could, however, replace this with a custom handler if you wish.
        The record which was being processed is passed in to this method.
        """
        if raiseExceptions:
            ei = sys.exc_info()
            try:
                traceback.print_exception(ei[0], ei[1], ei[2],
                                          None, sys.stderr)
                sys.stderr.write('Logged from file %s, line %s\n' % (
                                 record.filename, record.lineno))
            except IOError:
                pass    # see issue 5971
            finally:
                del ei
__init__.py 文件源码 项目:kinect-2-libras 作者: inessadl 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def callHandlers(self, record):
        """
        Pass a record to all relevant handlers.

        Loop through all handlers for this logger and its parents in the
        logger hierarchy. If no handler was found, output a one-off error
        message to sys.stderr. Stop searching up the hierarchy whenever a
        logger with the "propagate" attribute set to zero is found - that
        will be the last logger whose handlers are called.
        """
        c = self
        found = 0
        while c:
            for hdlr in c.handlers:
                found = found + 1
                if record.levelno >= hdlr.level:
                    hdlr.handle(record)
            if not c.propagate:
                c = None    #break out
            else:
                c = c.parent
        if (found == 0) and raiseExceptions and not self.manager.emittedNoHandlerWarning:
            sys.stderr.write("No handlers could be found for logger"
                             " \"%s\"\n" % self.name)
            self.manager.emittedNoHandlerWarning = 1
threading.py 文件源码 项目:kinect-2-libras 作者: inessadl 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, group=None, target=None, name=None,
                 args=(), kwargs=None, verbose=None):
        assert group is None, "group argument must be None for now"
        _Verbose.__init__(self, verbose)
        if kwargs is None:
            kwargs = {}
        self.__target = target
        self.__name = str(name or _newname())
        self.__args = args
        self.__kwargs = kwargs
        self.__daemonic = self._set_daemon()
        self.__ident = None
        self.__started = Event()
        self.__stopped = False
        self.__block = Condition(Lock())
        self.__initialized = True
        # sys.stderr is not stored in the class like
        # sys.exc_info since it can be changed between instances
        self.__stderr = _sys.stderr
atexit.py 文件源码 项目:kinect-2-libras 作者: inessadl 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _run_exitfuncs():
    """run any registered exit functions

    _exithandlers is traversed in reverse order so functions are executed
    last in, first out.
    """

    exc_info = None
    while _exithandlers:
        func, targs, kargs = _exithandlers.pop()
        try:
            func(*targs, **kargs)
        except SystemExit:
            exc_info = sys.exc_info()
        except:
            import traceback
            print >> sys.stderr, "Error in atexit._run_exitfuncs:"
            traceback.print_exc()
            exc_info = sys.exc_info()

    if exc_info is not None:
        raise exc_info[0], exc_info[1], exc_info[2]
base64.py 文件源码 项目:kinect-2-libras 作者: inessadl 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test():
    """Small test program"""
    import sys, getopt
    try:
        opts, args = getopt.getopt(sys.argv[1:], 'deut')
    except getopt.error, msg:
        sys.stdout = sys.stderr
        print msg
        print """usage: %s [-d|-e|-u|-t] [file|-]
        -d, -u: decode
        -e: encode (default)
        -t: encode and decode string 'Aladdin:open sesame'"""%sys.argv[0]
        sys.exit(2)
    func = encode
    for o, a in opts:
        if o == '-e': func = encode
        if o == '-d': func = decode
        if o == '-u': func = decode
        if o == '-t': test1(); return
    if args and args[0] != '-':
        with open(args[0], 'rb') as f:
            func(f, sys.stdout)
    else:
        func(sys.stdin, sys.stdout)
trace.py 文件源码 项目:kinect-2-libras 作者: inessadl 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, counts=None, calledfuncs=None, infile=None,
                 callers=None, outfile=None):
        self.counts = counts
        if self.counts is None:
            self.counts = {}
        self.counter = self.counts.copy() # map (filename, lineno) to count
        self.calledfuncs = calledfuncs
        if self.calledfuncs is None:
            self.calledfuncs = {}
        self.calledfuncs = self.calledfuncs.copy()
        self.callers = callers
        if self.callers is None:
            self.callers = {}
        self.callers = self.callers.copy()
        self.infile = infile
        self.outfile = outfile
        if self.infile:
            # Try to merge existing counts file.
            try:
                counts, calledfuncs, callers = \
                        pickle.load(open(self.infile, 'rb'))
                self.update(self.__class__(counts, calledfuncs, callers))
            except (IOError, EOFError, ValueError), err:
                print >> sys.stderr, ("Skipping counts file %r: %s"
                                      % (self.infile, err))
download_all_files_with_extension.py 文件源码 项目:cbapi-python 作者: carbonblack 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def main(cb, args):

    username = args.get("username")
    password = args.get("password")
    output = args.get("output")
    extensions = args.get("extensions").split(",")


    listener = ExtensionFileWatcherAndGrabber(args.get('server_url'), cb, username, password, extensions, output)

    try:
        print "Extension File Watcher and Grabber -- started.  Watching for:", extensions
        listener.process()
    except KeyboardInterrupt:
        print >> sys.stderr, "Caught Ctrl-C"
        listener.stop()
    print "Extension File Watcher and Grabber -- stopped."
sync.py 文件源码 项目:django-powerpages 作者: Open-E-WEB 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def add_to_vcs(self, summary):
        if (
            self.git_add and
            (SyncStatus.DELETED in summary or SyncStatus.ADDED in summary) and
            not self.dry_run and
            self.confirm(
                question=(
                    'Do you want to add created and removed files to GIT?'
                )
            )
        ):
            output, errors = subprocess.Popen(
                ['git', '-C', app_settings.SYNC_DIRECTORY,
                 'add', '-A', app_settings.SYNC_DIRECTORY],
                stdout=subprocess.PIPE, stderr=subprocess.PIPE
            ).communicate()
            if errors:
                raise self.error('Adding file changes to GIT failed!')
whatstyle.py 文件源码 项目:whatstyle 作者: mikr 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def reporterrors(self, job, jobres):
        # type: (ExeCall, ExeResult) -> None
        if not self.should_report_error(job, jobres):
            return
        category = INFO_PROCERRORS
        if jobres.error is not None:
            iprint(category, red("Error: calling %s caused this error: %s" % (job.exe,
                                                                              jobres.error)))
        else:
            iprint(category, red("Error: %s returned code %s" % (job.exe, jobres.returncode)))
        iprint(category, "  for these arguments: %s" % colored_cmdargs(job.cmdargs, RED))
        if jobres.stderr:
            text = jobres.stderr
            try:
                text = unistr(text)
            except UnicodeDecodeError:
                pass
            iprint(INFO_PROCERRORS, 'formatter stderr:"""\\\n%s"""' % red(text))
unitdata.py 文件源码 项目:charm-plumgrid-gateway 作者: openstack 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def debug(self, fh=sys.stderr):
        self.cursor.execute('select * from kv')
        pprint.pprint(self.cursor.fetchall(), stream=fh)
        self.cursor.execute('select * from kv_revisions')
        pprint.pprint(self.cursor.fetchall(), stream=fh)
lang2vec.py 文件源码 项目:lang-reps 作者: chaitanyamalaviya 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_language_code(lang_code, feature_database):
    # first, normalize to an ISO 639-3 code
    if lang_code in LETTER_CODES:
        lang_code = LETTER_CODES[lang_code]
    if lang_code not in feature_database["langs"]:
        print("ERROR: Language " + lang_code + " not found.", file=sys.stderr)
        sys.exit(2)
    return lang_code
analyzer.py 文件源码 项目:Cortex-Analyzers 作者: CERT-BDF 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self):
        self.__set_encoding()

        # Prepare in/out/err streams
        self.fperror = sys.stderr
        self.fpinput = sys.stdin
        self.fpoutput = sys.stdout

        # Load input
        self.__input = json.load(self.fpinput)

        # Set parameters
        self.data_type = self.get_param('dataType', None, 'Missing dataType field')
        self.tlp = self.get_param('tlp', 2)

        self.enable_check_tlp = self.get_param('config.check_tlp', False)
        self.max_tlp = self.get_param('config.max_tlp', 2)

        # Set proxy configuration if available
        self.http_proxy = self.get_param('config.proxy.http')
        self.https_proxy = self.get_param('config.proxy.https')

        self.__set_proxies()

        # Finally run check tlp
        if not (self.__check_tlp()):
            self.error('TLP is higher than allowed.')

        # Not breaking compatibility
        self.artifact = self.__input

        # Check for auto extraction config
        self.auto_extract = self.get_param('config.auto_extract', True)

    # Not breaking compatibility
analyzer.py 文件源码 项目:Cortex-Analyzers 作者: CERT-BDF 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __set_encoding(self):
        try:
            if sys.stdout.encoding != 'UTF-8':
                if sys.version_info[0] == 3:
                    sys.stdout = codecs.getwriter('utf-8')(sys.stdout.buffer, 'strict')
                else:
                    sys.stdout = codecs.getwriter('utf-8')(sys.stdout, 'strict')
            if sys.stderr.encoding != 'UTF-8':
                if sys.version_info[0] == 3:
                    sys.stderr = codecs.getwriter('utf-8')(sys.stderr.buffer, 'strict')
                else:
                    sys.stderr = codecs.getwriter('utf-8')(sys.stderr, 'strict')
        except:
            pass
out.py 文件源码 项目:txt2evernote 作者: Xunius 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def failureMessage(message):
    """ Displaying a message."""
    printLine(message, "\n", sys.stderr)
run.py 文件源码 项目:pyupdater-wx-demo 作者: wettenhj 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def CheckForUpdates(fileServerPort, debug):
    """
    Check for updates.

    Channel options are stable, beta & alpha
    Patches are only created & applied on the stable channel
    """
    assert CLIENT_CONFIG.PUBLIC_KEY is not None
    client = Client(CLIENT_CONFIG, refresh=True)
    appUpdate = client.update_check(CLIENT_CONFIG.APP_NAME,
                                    wxupdatedemo.__version__,
                                    channel='stable')
    if appUpdate:
        if hasattr(sys, "frozen"):
            downloaded = appUpdate.download()
            if downloaded:
                status = UpdateStatus.EXTRACTING_UPDATE_AND_RESTARTING
                if 'WXUPDATEDEMO_TESTING_FROZEN' in os.environ:
                    sys.stderr.write("Exiting with status: %s\n"
                                     % UPDATE_STATUS_STR[status])
                    ShutDownFileServer(fileServerPort)
                    sys.exit(0)
                ShutDownFileServer(fileServerPort)
                if debug:
                    logger.debug('Extracting update and restarting...')
                    time.sleep(10)
                appUpdate.extract_restart()
            else:
                status = UpdateStatus.UPDATE_DOWNLOAD_FAILED
        else:
            status = UpdateStatus.UPDATE_AVAILABLE_BUT_APP_NOT_FROZEN
    else:
        status = UpdateStatus.NO_AVAILABLE_UPDATES
    return status
run.py 文件源码 项目:pyupdater-wx-demo 作者: wettenhj 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def Run(argv, clientConfig=None):
    """
    The main entry point.
    """
    args = ParseArgs(argv)
    if args.version:
        DisplayVersionAndExit()
    InitializeLogging(args.debug)
    fileServerDir = os.environ.get('PYUPDATER_FILESERVER_DIR')
    fileServerPort = StartFileServer(fileServerDir)
    if fileServerPort:
        UpdatePyUpdaterClientConfig(clientConfig, fileServerPort)
        status = CheckForUpdates(fileServerPort, args.debug)
    else:
        status = UpdateStatus.COULDNT_CHECK_FOR_UPDATES
    if 'WXUPDATEDEMO_TESTING_FROZEN' in os.environ:
        sys.stderr.write("Exiting with status: %s\n"
                         % UPDATE_STATUS_STR[status])
        ShutDownFileServer(fileServerPort)
        sys.exit(0)
    mainLoop = (argv[0] != 'RunTester')
    if not 'WXUPDATEDEMO_TESTING_FROZEN' in os.environ:
        return PyUpdaterWxDemoApp.Run(
            fileServerPort, UPDATE_STATUS_STR[status], mainLoop)
    else:
        return None
encoders.py 文件源码 项目:onto-lstm 作者: pdasigi 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _get_embedding_layer(self, embedding_file=None):
        if self.embedding_layer is None:
            word_vocab_size = self.data_processor.get_vocab_size(onto_aware=False)
            synset_vocab_size = self.data_processor.get_vocab_size(onto_aware=True)
            if embedding_file is None:
                if not self.tune_embedding:
                    print >>sys.stderr, "Pretrained embedding is not given. Setting tune_embedding to True."
                    self.tune_embedding = True
                embedding_weights = None
            else:
                # TODO: Other sources for prior initialization
                embedding = self.data_processor.get_embedding_matrix(embedding_file, onto_aware=True)
                # Put the embedding in a list for Keras to treat it as weights of the embedding layer.
                embedding_weights = [embedding]
                if self.set_sense_priors:
                    initial_sense_prior_parameters = numpy.random.uniform(low=0.01, high=0.99,
                                                                          size=(word_vocab_size, 1))
                    # While setting weights, Keras wants trainable weights first, and then the non trainable
                    # weights. If we are not tuning the embedding, we need to keep the sense priors first.
                    if not self.tune_embedding:
                        embedding_weights = [initial_sense_prior_parameters] + embedding_weights
                    else:
                        embedding_weights.append(initial_sense_prior_parameters)
            self.embedding_layer = OntoAwareEmbedding(word_vocab_size, synset_vocab_size, self.embed_dim,
                                                      weights=embedding_weights, mask_zero=True,
                                                      set_sense_priors=self.set_sense_priors,
                                                      tune_embedding=self.tune_embedding,
                                                      name="embedding")
        return self.embedding_layer
model_pp_attachment.py 文件源码 项目:onto-lstm 作者: pdasigi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def process_data(self, input_file, onto_aware, for_test=False):
        '''
        Reads an input file and makes input for training or testing.
        '''
        dataset_type = "test" if for_test else "training"
        print >>sys.stderr, "Reading %s data" % dataset_type
        label_ind = []
        tagged_sentences = []
        max_sentence_length = 0
        all_sentence_lengths = []
        for line in open(input_file):
            lnstrp = line.strip()
            label, tagged_sentence = lnstrp.split("\t")
            sentence_length = len(tagged_sentence.split())
            all_sentence_lengths.append(sentence_length)
            if sentence_length > max_sentence_length:
                max_sentence_length = sentence_length
            label_ind.append(int(label))
            tagged_sentences.append(tagged_sentence)
        if for_test:
            if not self.model:
                raise RuntimeError("Model not trained yet!")
            input_shape = self.model.get_input_shape_at(0)  # (num_sentences, num_words, ...)
            sentlenlimit = input_shape[1]
        else:
            sentlenlimit = max_sentence_length
        # We need to readjust the labels because padding would affect the sentence indices.
        for i in range(len(label_ind)):
            length = all_sentence_lengths[i]
            label_ind[i] += sentlenlimit - length
        if not for_test:
            # Shuffling so that when Keras does validation split, it is not always at the end.
            sentences_and_labels = zip(tagged_sentences, label_ind)
            random.shuffle(sentences_and_labels)
            tagged_sentences, label_ind = zip(*sentences_and_labels)
        print >>sys.stderr, "Indexing %s data" % dataset_type
        inputs = self.data_processor.prepare_input(tagged_sentences, onto_aware=onto_aware,
                                                   sentlenlimit=sentlenlimit, for_test=for_test,
                                                   remove_singletons=False)
        labels = self.data_processor.make_one_hot(label_ind)
        return inputs, labels
model_pp_attachment.py 文件源码 项目:onto-lstm 作者: pdasigi 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def define_attention_model(self):
        '''
        Take necessary parts out of the model to get OntoLSTM attention.
        '''
        if not self.model:
            raise RuntimeError("Model not trained yet!")
        input_shape = self.model.get_input_shape_at(0)
        input_layer = Input(input_shape[1:], dtype='int32')  # removing batch size
        embedding_layer = None
        encoder_layer = None
        for layer in self.model.layers:
            if layer.name == "embedding":
                embedding_layer = layer
            elif layer.name == "onto_lstm":
                # We need to redefine the OntoLSTM layer with the learned weights and set return attention to True.
                # Assuming we'll want attention values for all words (return_sequences = True)
                if isinstance(layer, Bidirectional):
                    onto_lstm = OntoAttentionLSTM(input_dim=self.embed_dim, output_dim=self.embed_dim,
                                                  num_senses=self.num_senses, num_hyps=self.num_hyps,
                                                  use_attention=True, return_attention=True, return_sequences=True,
                                                  consume_less='gpu')
                    encoder_layer = Bidirectional(onto_lstm, weights=layer.get_weights())
                else:
                    encoder_layer = OntoAttentionLSTM(input_dim=self.embed_dim,
                                                      output_dim=self.embed_dim, num_senses=self.num_senses,
                                                      num_hyps=self.num_hyps, use_attention=True,
                                                      return_attention=True, return_sequences=True,
                                                      consume_less='gpu', weights=layer.get_weights())
                break
        if not embedding_layer or not encoder_layer:
            raise RuntimeError("Required layers not found!")
        attention_output = encoder_layer(embedding_layer(input_layer))
        self.attention_model = Model(inputs=input_layer, outputs=attention_output)
        print >>sys.stderr, "Attention model summary:"
        self.attention_model.summary()
        self.attention_model.compile(loss="mse", optimizer="sgd")  # Loss and optimizer do not matter!


问题


面经


文章

微信
公众号

扫码关注公众号