python类factorial()的实例源码

gamma_functions.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def eval(cls, a, z):
        from sympy import unpolarify, I, factorial, exp, expint
        if z.is_Number:
            if z is S.NaN:
                return S.NaN
            elif z is S.Infinity:
                return S.Zero
            elif z is S.Zero:
                # TODO: Holds only for Re(a) > 0:
                return gamma(a)

        # We extract branching information here. C/f lowergamma.
        nx, n = z.extract_branch_factor()
        if a.is_integer and (a > 0) == True:
            nx = unpolarify(z)
            if z != nx:
                return uppergamma(a, nx)
        elif a.is_integer and (a <= 0) == True:
            if n != 0:
                return -2*pi*I*n*(-1)**(-a)/factorial(-a) + uppergamma(a, nx)
        elif n != 0:
            return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx)

        # Special values.
        if a.is_Number:
            # TODO this should be non-recursive
            if a is S.One:
                return C.exp(-z)
            elif a is S.Half:
                return sqrt(pi)*(1 - erf(sqrt(z)))  # TODO could use erfc...
            elif a.is_Integer or (2*a).is_Integer:
                b = a - 1
                if b.is_positive:
                    return b*cls(b, z) + z**b * C.exp(-z)
                elif b.is_Integer:
                    return expint(-b, z)*unpolarify(z)**(b + 1)

                if not a.is_Integer:
                    return (cls(a + 1, z) - z**a * C.exp(-z))/a
gamma_functions.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _eval_rewrite_as_zeta(self, n, z):
        if n >= S.One:
            return (-1)**(n + 1)*C.factorial(n)*zeta(n + 1, z)
        else:
            return self
gamma_functions.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _eval_rewrite_as_harmonic(self, n, z):
        if n.is_integer:
            if n == S.Zero:
                return harmonic(z - 1) - S.EulerGamma
            else:
                return S.NegativeOne**(n+1) * C.factorial(n) * (C.zeta(n+1) - harmonic(z-1, n+1))
trajectory.py 文件源码 项目:pyinduct 作者: pyinduct 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, states, interval, method, differential_order=0):
        """
        :param states: tuple of states in beginning and end of interval
        :param interval: time interval (tuple)
        :param method: method to use (``poly`` or ``tanh``)
        :param differential_order: grade of differential flatness :math:`\\gamma`
        """
        self.yd = states
        self.t0 = interval[0]
        self.t1 = interval[1]
        self.dt = interval[1] - interval[0]

        # setup symbolic expressions
        if method == "tanh":
            tau, sigma = sp.symbols('tau, sigma')
            # use a gevrey-order of alpha = 1 + 1/sigma
            sigma = 1.1
            phi = .5*(1 + sp.tanh(2*(2*tau - 1)/((4*tau*(1-tau))**sigma)))

        elif method == "poly":
            gamma = differential_order  # + 1 # TODO check this against notes
            tau, k = sp.symbols('tau, k')

            alpha = sp.factorial(2 * gamma + 1)

            f = sp.binomial(gamma, k) * (-1) ** k * tau ** (gamma + k + 1) / (gamma + k + 1)
            phi = alpha / sp.factorial(gamma) ** 2 * sp.summation(f, (k, 0, gamma))
        else:
            raise NotImplementedError("method {} not implemented!".format(method))

        # differentiate phi(tau), index in list corresponds to order
        dphi_sym = [phi]  # init with phi(tau)
        for order in range(differential_order):
            dphi_sym.append(dphi_sym[-1].diff(tau))

        # lambdify
        self.dphi_num = []
        for der in dphi_sym:
            self.dphi_num.append(sp.lambdify(tau, der, 'numpy'))
trajectory.py 文件源码 项目:pyinduct 作者: pyinduct 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def temporal_derived_power_series(z, C, up_to_order, series_termination_index, spatial_der_order=0):
    """
    compute the temporal derivatives
    q^{(n)}(z) = \sum_{k=0}^{series_termination_index} C[k][n,:] z^k / k!
    from n=0 to n=up_to_order
    :param z: scalar
    :param C:
    :param up_to_order:
    :param series_termination_index:
    :param spatial_der_order:
    :return: Q = np.array( [q^{(0)}, ... , q^{(up_to_order)}] )
    """

    if not isinstance(z, Number):
        raise TypeError
    if any([C[i].shape[0] - 1 < up_to_order for i in range(series_termination_index+1)]):
        raise ValueError

    len_t = C[0].shape[1]
    Q = np.nan*np.zeros((up_to_order+1, len_t))

    for i in range(up_to_order+1):
        sum_Q = np.zeros(len_t)
        for j in range(series_termination_index+1-spatial_der_order):
            sum_Q += C[j+spatial_der_order][i, :]*z**(j)/sm.factorial(j)
        Q[i, :] = sum_Q

    return Q
drv_types.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def pdf(self, k):
        return self.lamda**k / factorial(k) * exp(-self.lamda)
test_residues.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_expressions_failing():
    assert residue(1/(x**4 + 1), x, exp(I*pi/4)) == -(S(1)/4 + I/4)/sqrt(2)

    n = Symbol('n', integer=True, positive=True)
    assert residue(exp(z)/(z - pi*I/4*a)**n, z, I*pi*a) == \
        exp(I*pi*a/4)/factorial(n - 1)
    assert residue(1/(x**2 + a**2)**2, x, a*I) == -I/4/a**3
test_limits.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_factorial():
    from sympy import factorial, E
    f = factorial(x)
    assert limit(f, x, oo) == oo
    assert limit(x/f, x, oo) == 0
    # see Stirling's approximation:
    # http://en.wikipedia.org/wiki/Stirling's_approximation
    assert limit(f/(sqrt(2*pi*x)*(x/E)**x), x, oo) == 1
    assert limit(f, x, -oo) == factorial(-oo)
    assert limit(f, x, x**2) == factorial(x**2)
    assert limit(f, x, -x**2) == factorial(-x**2)
test_assumptions.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_issue_9115():
    n = Dummy('n', integer=True, nonnegative=True)
    assert (factorial(n) >= 1) == True
    assert (factorial(n) < 1) == False
expr.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def taylor_term(self, n, x, *previous_terms):
        """General method for the taylor term.

        This method is slow, because it differentiates n-times. Subclasses can
        redefine it to make it faster by using the "previous_terms".
        """
        from sympy import Dummy, factorial
        x = sympify(x)
        _x = Dummy('x')
        return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / factorial(n)
test_gosper.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def test_gosper_term():
    assert gosper_term((4*k + 1)*factorial(
        k)/factorial(2*k + 1), k) == (-k - S(1)/2)/(k + S(1)/4)
test_gosper.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_gosper_sum():
    assert gosper_sum(1, (k, 0, n)) == 1 + n
    assert gosper_sum(k, (k, 0, n)) == n*(1 + n)/2
    assert gosper_sum(k**2, (k, 0, n)) == n*(1 + n)*(1 + 2*n)/6
    assert gosper_sum(k**3, (k, 0, n)) == n**2*(1 + n)**2/4

    assert gosper_sum(2**k, (k, 0, n)) == 2*2**n - 1

    assert gosper_sum(factorial(k), (k, 0, n)) is None
    assert gosper_sum(binomial(n, k), (k, 0, n)) is None

    assert gosper_sum(factorial(k)/k**2, (k, 0, n)) is None
    assert gosper_sum((k - 3)*factorial(k), (k, 0, n)) is None

    assert gosper_sum(k*factorial(k), k) == factorial(k)
    assert gosper_sum(
        k*factorial(k), (k, 0, n)) == n*factorial(n) + factorial(n) - 1

    assert gosper_sum((-1)**k*binomial(n, k), (k, 0, n)) == 0
    assert gosper_sum((
        -1)**k*binomial(n, k), (k, 0, m)) == -(-1)**m*(m - n)*binomial(n, m)/n

    assert gosper_sum((4*k + 1)*factorial(k)/factorial(2*k + 1), (k, 0, n)) == \
        (2*factorial(2*n + 1) - factorial(n))/factorial(2*n + 1)

    # issue 6033:
    assert gosper_sum(
        n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b)), \
        (n, 0, m)) == -a*b*(exp(m*log(a))*exp(m*log(b))*factorial(a)* \
        factorial(b) - factorial(a + m)*factorial(b + m))/(factorial(a)* \
        factorial(b)*factorial(a + m)*factorial(b + m))
test_gosper.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_gosper_sum_AeqB_part1():
    f1a = n**4
    f1b = n**3*2**n
    f1c = 1/(n**2 + sqrt(5)*n - 1)
    f1d = n**4*4**n/binomial(2*n, n)
    f1e = factorial(3*n)/(factorial(n)*factorial(n + 1)*factorial(n + 2)*27**n)
    f1f = binomial(2*n, n)**2/((n + 1)*4**(2*n))
    f1g = (4*n - 1)*binomial(2*n, n)**2/((2*n - 1)**2*4**(2*n))
    f1h = n*factorial(n - S(1)/2)**2/factorial(n + 1)**2

    g1a = m*(m + 1)*(2*m + 1)*(3*m**2 + 3*m - 1)/30
    g1b = 26 + 2**(m + 1)*(m**3 - 3*m**2 + 9*m - 13)
    g1c = (m + 1)*(m*(m**2 - 7*m + 3)*sqrt(5) - (
        3*m**3 - 7*m**2 + 19*m - 6))/(2*m**3*sqrt(5) + m**4 + 5*m**2 - 1)/6
    g1d = -S(2)/231 + 2*4**m*(m + 1)*(63*m**4 + 112*m**3 + 18*m**2 -
             22*m + 3)/(693*binomial(2*m, m))
    g1e = -S(9)/2 + (81*m**2 + 261*m + 200)*factorial(
        3*m + 2)/(40*27**m*factorial(m)*factorial(m + 1)*factorial(m + 2))
    g1f = (2*m + 1)**2*binomial(2*m, m)**2/(4**(2*m)*(m + 1))
    g1g = -binomial(2*m, m)**2/4**(2*m)
    g1h = 4*pi -(2*m + 1)**2*(3*m + 4)*factorial(m - S(1)/2)**2/factorial(m + 1)**2

    g = gosper_sum(f1a, (n, 0, m))
    assert g is not None and simplify(g - g1a) == 0
    g = gosper_sum(f1b, (n, 0, m))
    assert g is not None and simplify(g - g1b) == 0
    g = gosper_sum(f1c, (n, 0, m))
    assert g is not None and simplify(g - g1c) == 0
    g = gosper_sum(f1d, (n, 0, m))
    assert g is not None and simplify(g - g1d) == 0
    g = gosper_sum(f1e, (n, 0, m))
    assert g is not None and simplify(g - g1e) == 0
    g = gosper_sum(f1f, (n, 0, m))
    assert g is not None and simplify(g - g1f) == 0
    g = gosper_sum(f1g, (n, 0, m))
    assert g is not None and simplify(g - g1g) == 0
    g = gosper_sum(f1h, (n, 0, m))
    # need to call rewrite(gamma) here because we have terms involving
    # factorial(1/2)
    assert g is not None and simplify(g - g1h).rewrite(gamma) == 0
test_gosper.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def test_gosper_nan():
    a = Symbol('a', positive=True)
    b = Symbol('b', positive=True)
    n = Symbol('n', integer=True)
    m = Symbol('m', integer=True)
    f2d = n*(n + a + b)*a**n*b**n/(factorial(n + a)*factorial(n + b))
    g2d = 1/(factorial(a - 1)*factorial(
        b - 1)) - a**(m + 1)*b**(m + 1)/(factorial(a + m)*factorial(b + m))
    g = gosper_sum(f2d, (n, 0, m))
    assert simplify(g - g2d) == 0
test_recurr.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_rsolve_hyper():
    assert rsolve_hyper([-1, -1, 1], 0, n) in [
        C0*(S.Half - S.Half*sqrt(5))**n + C1*(S.Half + S.Half*sqrt(5))**n,
        C1*(S.Half - S.Half*sqrt(5))**n + C0*(S.Half + S.Half*sqrt(5))**n,
    ]

    assert rsolve_hyper([n**2 - 2, -2*n - 1, 1], 0, n) in [
        C0*rf(sqrt(2), n) + C1*rf(-sqrt(2), n),
        C1*rf(sqrt(2), n) + C0*rf(-sqrt(2), n),
    ]

    assert rsolve_hyper([n**2 - k, -2*n - 1, 1], 0, n) in [
        C0*rf(sqrt(k), n) + C1*rf(-sqrt(k), n),
        C1*rf(sqrt(k), n) + C0*rf(-sqrt(k), n),
    ]

    assert rsolve_hyper(
        [2*n*(n + 1), -n**2 - 3*n + 2, n - 1], 0, n) == C1*factorial(n) + C0*2**n

    assert rsolve_hyper(
        [n + 2, -(2*n + 3)*(17*n**2 + 51*n + 39), n + 1], 0, n) == None

    assert rsolve_hyper([-n - 1, -1, 1], 0, n) == None

    assert rsolve_hyper([-1, 1], n, n).expand() == C0 + n**2/2 - n/2

    assert rsolve_hyper([-1, 1], 1 + n, n).expand() == C0 + n**2/2 + n/2

    assert rsolve_hyper([-1, 1], 3*(n + n**2), n).expand() == C0 + n**3 - n

    assert rsolve_hyper([-a, 1],0,n).expand() == C0*a**n

    assert rsolve_hyper([-a, 0, 1], 0, n).expand() == (-1)**n*C1*a**(n/2) + C0*a**(n/2)

    assert rsolve_hyper([1, 1, 1], 0, n).expand() == \
        C0*(-S(1)/2 - sqrt(3)*I/2)**n + C1*(-S(1)/2 + sqrt(3)*I/2)**n

    assert rsolve_hyper([1, -2*n/a - 2/a, 1], 0, n) is None
test_theanocode.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_factorial():
    n = sympy.Symbol('n')
    assert theano_code(sympy.factorial(n))
test_hyper.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_hyper_rewrite_sum():
    from sympy import RisingFactorial, factorial, Dummy, Sum
    _k = Dummy("k")
    assert replace_dummy(hyper((1, 2), (1, 3), x).rewrite(Sum), _k) == \
        Sum(x**_k / factorial(_k) * RisingFactorial(2, _k) /
            RisingFactorial(3, _k), (_k, 0, oo))

    assert hyper((1, 2, 3), (-1, 3), z).rewrite(Sum) == \
        hyper((1, 2, 3), (-1, 3), z)
error_functions.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def taylor_term(n, x, *previous_terms):
        if n < 0 or n % 2 == 0:
            return S.Zero
        else:
            x = sympify(x)
            k = floor((n - 1)/S(2))
            if len(previous_terms) > 2:
                return -previous_terms[-2] * x**2 * (n - 2)/(n*k)
            else:
                return 2*(-1)**k * x**n/(n*factorial(k)*sqrt(S.Pi))
error_functions.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def taylor_term(n, x, *previous_terms):
        if n < 0 or n % 2 == 0:
            return S.Zero
        else:
            x = sympify(x)
            k = floor((n - 1)/S(2))
            if len(previous_terms) > 2:
                return previous_terms[-2] * x**2 * (n - 2)/(n*k)
            else:
                return 2 * x**n/(n*factorial(k)*sqrt(S.Pi))
error_functions.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _eval_rewrite_as_Ei(self, nu, z):
        from sympy import exp_polar, unpolarify, exp, factorial
        if nu == 1:
            return -Ei(z*exp_polar(-I*pi)) - I*pi
        elif nu.is_Integer and nu > 1:
            # DLMF, 8.19.7
            x = -unpolarify(z)
            return x**(nu - 1)/factorial(nu - 1)*E1(z).rewrite(Ei) + \
                exp(x)/factorial(nu - 1) * \
                Add(*[factorial(nu - k - 2)*x**k for k in range(nu - 1)])
        else:
            return self


问题


面经


文章

微信
公众号

扫码关注公众号