python类tan()的实例源码

simplify.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _futrig(e, **kwargs):
    """Helper for futrig."""
    from sympy.strategies.tree import greedy
    from sympy.strategies.core import identity
    from sympy.simplify.fu import (
        TR1, TR2, TR3, TR2i, TR14, TR5, TR10, L, TR10i,
        TR8, TR6, TR15, TR16, TR111, TR5, TRmorrie, TR11, TR14, TR22,
        TR12)
    from sympy.core.compatibility import ordered, _nodes

    if not e.has(C.TrigonometricFunction):
        return e

    if e.is_Mul:
        coeff, e = e.as_independent(C.TrigonometricFunction)
    else:
        coeff = S.One

    Lops = lambda x: (L(x), x.count_ops(), _nodes(x), len(x.args), x.is_Add)
    trigs = lambda x: x.has(C.TrigonometricFunction)

    tree = [identity,
        (
        TR3,  # canonical angles
        TR1,  # sec-csc -> cos-sin
        TR12,  # expand tan of sum
        lambda x: _eapply(factor, x, trigs),
        TR2,  # tan-cot -> sin-cos
        [identity, lambda x: _eapply(_mexpand, x, trigs)],
        TR2i,  # sin-cos ratio -> tan
        lambda x: _eapply(lambda i: factor(i.normal()), x, trigs),
        TR14,  # factored identities
        TR5,  # sin-pow -> cos_pow
        TR10,  # sin-cos of sums -> sin-cos prod
        TR11, TR6, # reduce double angles and rewrite cos pows
        lambda x: _eapply(factor, x, trigs),
        TR14,  # factored powers of identities
        [identity, lambda x: _eapply(_mexpand, x, trigs)],
        TRmorrie,
        TR10i,  # sin-cos products > sin-cos of sums
        [identity, TR8],  # sin-cos products -> sin-cos of sums
        [identity, lambda x: TR2i(TR2(x))],  # tan -> sin-cos -> tan
        [
            lambda x: _eapply(expand_mul, TR5(x), trigs),
            lambda x: _eapply(
                expand_mul, TR15(x), trigs)], # pos/neg powers of sin
        [
            lambda x:  _eapply(expand_mul, TR6(x), trigs),
            lambda x:  _eapply(
                expand_mul, TR16(x), trigs)], # pos/neg powers of cos
        TR111,  # tan, sin, cos to neg power -> cot, csc, sec
        [identity, TR2i],  # sin-cos ratio to tan
        [identity, lambda x: _eapply(
            expand_mul, TR22(x), trigs)],  # tan-cot to sec-csc
        TR1, TR2, TR2i,
        [identity, lambda x: _eapply(
            factor_terms, TR12(x), trigs)],  # expand tan of sum
        )]
    e = greedy(tree, objective=Lops)(e)

    return coeff*e
simplify.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _match_div_rewrite(expr, i):
    """helper for __trigsimp"""
    if i == 0:
         expr = _replace_mul_fpowxgpow(expr, sin, cos,
            _midn, tan, _idn)
    elif i == 1:
         expr = _replace_mul_fpowxgpow(expr, tan, cos,
            _idn, sin, _idn)
    elif i == 2:
         expr = _replace_mul_fpowxgpow(expr, cot, sin,
            _idn, cos, _idn)
    elif i == 3:
         expr = _replace_mul_fpowxgpow(expr, tan, sin,
            _midn, cos, _midn)
    elif i == 4:
         expr = _replace_mul_fpowxgpow(expr, cot, cos,
            _midn, sin, _midn)
    elif i == 5:
         expr = _replace_mul_fpowxgpow(expr, cot, tan,
            _idn, _one, _idn)
    # i in (6, 7) is skipped
    elif i == 8:
         expr = _replace_mul_fpowxgpow(expr, sinh, cosh,
            _midn, tanh, _idn)
    elif i == 9:
         expr = _replace_mul_fpowxgpow(expr, tanh, cosh,
            _idn, sinh, _idn)
    elif i == 10:
        expr = _replace_mul_fpowxgpow(expr, coth, sinh,
            _idn, cosh, _idn)
    elif i == 11:
        expr = _replace_mul_fpowxgpow(expr, tanh, sinh,
            _midn, cosh, _midn)
    elif i == 12:
        expr = _replace_mul_fpowxgpow(expr, coth, cosh,
            _midn, sinh, _midn)
    elif i == 13:
        expr = _replace_mul_fpowxgpow(expr, coth, tanh,
            _idn, _one, _idn)
    else:
        return None
    return expr
manualintegrate.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def manualintegrate(f, var):
    """manualintegrate(f, var)

    Compute indefinite integral of a single variable using an algorithm that
    resembles what a student would do by hand.

    Unlike ``integrate``, var can only be a single symbol.

    Examples
    ========

    >>> from sympy import sin, cos, tan, exp, log, integrate
    >>> from sympy.integrals.manualintegrate import manualintegrate
    >>> from sympy.abc import x
    >>> manualintegrate(1 / x, x)
    log(x)
    >>> integrate(1/x)
    log(x)
    >>> manualintegrate(log(x), x)
    x*log(x) - x
    >>> integrate(log(x))
    x*log(x) - x
    >>> manualintegrate(exp(x) / (1 + exp(2 * x)), x)
    atan(exp(x))
    >>> integrate(exp(x) / (1 + exp(2 * x)))
    RootSum(4*_z**2 + 1, Lambda(_i, _i*log(2*_i + exp(x))))
    >>> manualintegrate(cos(x)**4 * sin(x), x)
    -cos(x)**5/5
    >>> integrate(cos(x)**4 * sin(x), x)
    -cos(x)**5/5
    >>> manualintegrate(cos(x)**4 * sin(x)**3, x)
    cos(x)**7/7 - cos(x)**5/5
    >>> integrate(cos(x)**4 * sin(x)**3, x)
    cos(x)**7/7 - cos(x)**5/5
    >>> manualintegrate(tan(x), x)
    -log(cos(x))
    >>> integrate(tan(x), x)
    -log(sin(x)**2 - 1)/2

    See Also
    ========

    sympy.integrals.integrals.integrate
    sympy.integrals.integrals.Integral.doit
    sympy.integrals.integrals.Integral
    """
    return _manualintegrate(integral_steps(f, var))
test_codegen.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def test_complicated_codegen_f95():
    from sympy import sin, cos, tan
    x, y, z = symbols('x,y,z')
    name_expr = [
        ("test1", ((sin(x) + cos(y) + tan(z))**7).expand()),
        ("test2", cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))),
    ]
    result = codegen(name_expr, "F95", "file", header=False, empty=False)
    assert result[0][0] == "file.f90"
    expected = (
        'REAL*8 function test1(x, y, z)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'REAL*8, intent(in) :: y\n'
        'REAL*8, intent(in) :: z\n'
        'test1 = sin(x)**7 + 7*sin(x)**6*cos(y) + 7*sin(x)**6*tan(z) + 21*sin(x) &\n'
        '      **5*cos(y)**2 + 42*sin(x)**5*cos(y)*tan(z) + 21*sin(x)**5*tan(z) &\n'
        '      **2 + 35*sin(x)**4*cos(y)**3 + 105*sin(x)**4*cos(y)**2*tan(z) + &\n'
        '      105*sin(x)**4*cos(y)*tan(z)**2 + 35*sin(x)**4*tan(z)**3 + 35*sin( &\n'
        '      x)**3*cos(y)**4 + 140*sin(x)**3*cos(y)**3*tan(z) + 210*sin(x)**3* &\n'
        '      cos(y)**2*tan(z)**2 + 140*sin(x)**3*cos(y)*tan(z)**3 + 35*sin(x) &\n'
        '      **3*tan(z)**4 + 21*sin(x)**2*cos(y)**5 + 105*sin(x)**2*cos(y)**4* &\n'
        '      tan(z) + 210*sin(x)**2*cos(y)**3*tan(z)**2 + 210*sin(x)**2*cos(y) &\n'
        '      **2*tan(z)**3 + 105*sin(x)**2*cos(y)*tan(z)**4 + 21*sin(x)**2*tan &\n'
        '      (z)**5 + 7*sin(x)*cos(y)**6 + 42*sin(x)*cos(y)**5*tan(z) + 105* &\n'
        '      sin(x)*cos(y)**4*tan(z)**2 + 140*sin(x)*cos(y)**3*tan(z)**3 + 105 &\n'
        '      *sin(x)*cos(y)**2*tan(z)**4 + 42*sin(x)*cos(y)*tan(z)**5 + 7*sin( &\n'
        '      x)*tan(z)**6 + cos(y)**7 + 7*cos(y)**6*tan(z) + 21*cos(y)**5*tan( &\n'
        '      z)**2 + 35*cos(y)**4*tan(z)**3 + 35*cos(y)**3*tan(z)**4 + 21*cos( &\n'
        '      y)**2*tan(z)**5 + 7*cos(y)*tan(z)**6 + tan(z)**7\n'
        'end function\n'
        'REAL*8 function test2(x, y, z)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'REAL*8, intent(in) :: y\n'
        'REAL*8, intent(in) :: z\n'
        'test2 = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))\n'
        'end function\n'
    )
    assert result[0][1] == expected
    assert result[1][0] == "file.h"
    expected = (
        'interface\n'
        'REAL*8 function test1(x, y, z)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'REAL*8, intent(in) :: y\n'
        'REAL*8, intent(in) :: z\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test2(x, y, z)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'REAL*8, intent(in) :: y\n'
        'REAL*8, intent(in) :: z\n'
        'end function\n'
        'end interface\n'
    )
    assert result[1][1] == expected
hyperbolic.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def eval(cls, arg):
        from sympy import tan
        arg = sympify(arg)

        if arg.is_Number:
            if arg is S.NaN:
                return S.NaN
            elif arg is S.Infinity:
                return S.One
            elif arg is S.NegativeInfinity:
                return S.NegativeOne
            elif arg is S.Zero:
                return S.Zero
            elif arg.is_negative:
                return -cls(-arg)
        else:
            if arg is S.ComplexInfinity:
                return S.NaN

            i_coeff = arg.as_coefficient(S.ImaginaryUnit)

            if i_coeff is not None:
                if _coeff_isneg(i_coeff):
                    return -S.ImaginaryUnit * tan(-i_coeff)
                return S.ImaginaryUnit * tan(i_coeff)
            else:
                if _coeff_isneg(arg):
                    return -cls(-arg)

            if arg.func == asinh:
                x = arg.args[0]
                return x/sqrt(1 + x**2)

            if arg.func == acosh:
                x = arg.args[0]
                return sqrt(x - 1) * sqrt(x + 1) / x

            if arg.func == atanh:
                return arg.args[0]

            if arg.func == acoth:
                return 1/arg.args[0]
manualintegrate.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 73 收藏 0 点赞 0 评论 0
def trig_substitution_rule(integral):
    integrand, symbol = integral
    a = sympy.Wild('a', exclude=[0, symbol])
    b = sympy.Wild('b', exclude=[0, symbol])
    theta = sympy.Dummy("theta")

    matches = integrand.find(a + b*symbol**2)
    if matches:
        for expr in matches:
            match = expr.match(a + b*symbol**2)
            a = match[a]
            b = match[b]

            a_positive = ((a.is_number and a > 0) or a.is_positive)
            b_positive = ((b.is_number and b > 0) or b.is_positive)
            x_func = None
            if a_positive and b_positive:
                # a**2 + b*x**2. Assume sec(theta) > 0, -pi/2 < theta < pi/2
                x_func = (sympy.sqrt(a)/sympy.sqrt(b)) * sympy.tan(theta)
                # Do not restrict the domain: tan(theta) takes on any real
                # value on the interval -pi/2 < theta < pi/2 so x takes on
                # any value
                restriction = True
            elif a_positive and not b_positive:
                # a**2 - b*x**2. Assume cos(theta) > 0, -pi/2 < theta < pi/2
                constant = sympy.sqrt(a)/sympy.sqrt(-b)
                x_func = constant * sympy.sin(theta)
                restriction = sympy.And(symbol > -constant, symbol < constant)
            elif not a_positive and b_positive:
                # b*x**2 - a**2. Assume sin(theta) > 0, 0 < theta < pi
                constant = sympy.sqrt(-a)/sympy.sqrt(b)
                x_func = constant * sympy.sec(theta)
                restriction = sympy.And(symbol > -constant, symbol < constant)
            if x_func:
                # Manually simplify sqrt(trig(theta)**2) to trig(theta)
                # Valid due to assumed domain restriction
                substitutions = {}
                for f in [sympy.sin, sympy.cos, sympy.tan,
                          sympy.sec, sympy.csc, sympy.cot]:
                    substitutions[sympy.sqrt(f(theta)**2)] = f(theta)
                    substitutions[sympy.sqrt(f(theta)**(-2))] = 1/f(theta)

                replaced = integrand.subs(symbol, x_func).trigsimp()
                replaced = replaced.subs(substitutions)
                if not replaced.has(symbol):
                    replaced *= manual_diff(x_func, theta)
                    replaced = replaced.trigsimp()
                    secants = replaced.find(1/sympy.cos(theta))
                    if secants:
                        replaced = replaced.xreplace({
                            1/sympy.cos(theta): sympy.sec(theta)
                        })

                    substep = integral_steps(replaced, theta)
                    if not contains_dont_know(substep):
                        return TrigSubstitutionRule(
                            theta, x_func, replaced, substep, restriction,
                            integrand, symbol)
manualintegrate.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def manualintegrate(f, var):
    """manualintegrate(f, var)

    Compute indefinite integral of a single variable using an algorithm that
    resembles what a student would do by hand.

    Unlike ``integrate``, var can only be a single symbol.

    Examples
    ========

    >>> from sympy import sin, cos, tan, exp, log, integrate
    >>> from sympy.integrals.manualintegrate import manualintegrate
    >>> from sympy.abc import x
    >>> manualintegrate(1 / x, x)
    log(x)
    >>> integrate(1/x)
    log(x)
    >>> manualintegrate(log(x), x)
    x*log(x) - x
    >>> integrate(log(x))
    x*log(x) - x
    >>> manualintegrate(exp(x) / (1 + exp(2 * x)), x)
    atan(exp(x))
    >>> integrate(exp(x) / (1 + exp(2 * x)))
    RootSum(4*_z**2 + 1, Lambda(_i, _i*log(2*_i + exp(x))))
    >>> manualintegrate(cos(x)**4 * sin(x), x)
    -cos(x)**5/5
    >>> integrate(cos(x)**4 * sin(x), x)
    -cos(x)**5/5
    >>> manualintegrate(cos(x)**4 * sin(x)**3, x)
    cos(x)**7/7 - cos(x)**5/5
    >>> integrate(cos(x)**4 * sin(x)**3, x)
    cos(x)**7/7 - cos(x)**5/5
    >>> manualintegrate(tan(x), x)
    -log(cos(x))
    >>> integrate(tan(x), x)
    -log(sin(x)**2 - 1)/2

    See Also
    ========

    sympy.integrals.integrals.integrate
    sympy.integrals.integrals.Integral.doit
    sympy.integrals.integrals.Integral
    """
    return _manualintegrate(integral_steps(f, var))
test_codegen.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_ansi_math1_codegen():
    # not included: log10
    from sympy import (acos, asin, atan, ceiling, cos, cosh, floor, log, ln,
        sin, sinh, sqrt, tan, tanh, Abs)
    x = symbols('x')
    name_expr = [
        ("test_fabs", Abs(x)),
        ("test_acos", acos(x)),
        ("test_asin", asin(x)),
        ("test_atan", atan(x)),
        ("test_ceil", ceiling(x)),
        ("test_cos", cos(x)),
        ("test_cosh", cosh(x)),
        ("test_floor", floor(x)),
        ("test_log", log(x)),
        ("test_ln", ln(x)),
        ("test_sin", sin(x)),
        ("test_sinh", sinh(x)),
        ("test_sqrt", sqrt(x)),
        ("test_tan", tan(x)),
        ("test_tanh", tanh(x)),
    ]
    result = codegen(name_expr, "C89", "file", header=False, empty=False)
    assert result[0][0] == "file.c"
    assert result[0][1] == (
        '#include "file.h"\n#include <math.h>\n'
        'double test_fabs(double x) {\n   double test_fabs_result;\n   test_fabs_result = fabs(x);\n   return test_fabs_result;\n}\n'
        'double test_acos(double x) {\n   double test_acos_result;\n   test_acos_result = acos(x);\n   return test_acos_result;\n}\n'
        'double test_asin(double x) {\n   double test_asin_result;\n   test_asin_result = asin(x);\n   return test_asin_result;\n}\n'
        'double test_atan(double x) {\n   double test_atan_result;\n   test_atan_result = atan(x);\n   return test_atan_result;\n}\n'
        'double test_ceil(double x) {\n   double test_ceil_result;\n   test_ceil_result = ceil(x);\n   return test_ceil_result;\n}\n'
        'double test_cos(double x) {\n   double test_cos_result;\n   test_cos_result = cos(x);\n   return test_cos_result;\n}\n'
        'double test_cosh(double x) {\n   double test_cosh_result;\n   test_cosh_result = cosh(x);\n   return test_cosh_result;\n}\n'
        'double test_floor(double x) {\n   double test_floor_result;\n   test_floor_result = floor(x);\n   return test_floor_result;\n}\n'
        'double test_log(double x) {\n   double test_log_result;\n   test_log_result = log(x);\n   return test_log_result;\n}\n'
        'double test_ln(double x) {\n   double test_ln_result;\n   test_ln_result = log(x);\n   return test_ln_result;\n}\n'
        'double test_sin(double x) {\n   double test_sin_result;\n   test_sin_result = sin(x);\n   return test_sin_result;\n}\n'
        'double test_sinh(double x) {\n   double test_sinh_result;\n   test_sinh_result = sinh(x);\n   return test_sinh_result;\n}\n'
        'double test_sqrt(double x) {\n   double test_sqrt_result;\n   test_sqrt_result = sqrt(x);\n   return test_sqrt_result;\n}\n'
        'double test_tan(double x) {\n   double test_tan_result;\n   test_tan_result = tan(x);\n   return test_tan_result;\n}\n'
        'double test_tanh(double x) {\n   double test_tanh_result;\n   test_tanh_result = tanh(x);\n   return test_tanh_result;\n}\n'
    )
    assert result[1][0] == "file.h"
    assert result[1][1] == (
        '#ifndef PROJECT__FILE__H\n#define PROJECT__FILE__H\n'
        'double test_fabs(double x);\ndouble test_acos(double x);\n'
        'double test_asin(double x);\ndouble test_atan(double x);\n'
        'double test_ceil(double x);\ndouble test_cos(double x);\n'
        'double test_cosh(double x);\ndouble test_floor(double x);\n'
        'double test_log(double x);\ndouble test_ln(double x);\n'
        'double test_sin(double x);\ndouble test_sinh(double x);\n'
        'double test_sqrt(double x);\ndouble test_tan(double x);\n'
        'double test_tanh(double x);\n#endif\n'
    )
test_codegen.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_complicated_codegen_f95():
    from sympy import sin, cos, tan
    x, y, z = symbols('x,y,z')
    name_expr = [
        ("test1", ((sin(x) + cos(y) + tan(z))**7).expand()),
        ("test2", cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))),
    ]
    result = codegen(name_expr, "F95", "file", header=False, empty=False)
    assert result[0][0] == "file.f90"
    expected = (
        'REAL*8 function test1(x, y, z)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'REAL*8, intent(in) :: y\n'
        'REAL*8, intent(in) :: z\n'
        'test1 = sin(x)**7 + 7*sin(x)**6*cos(y) + 7*sin(x)**6*tan(z) + 21*sin(x) &\n'
        '      **5*cos(y)**2 + 42*sin(x)**5*cos(y)*tan(z) + 21*sin(x)**5*tan(z) &\n'
        '      **2 + 35*sin(x)**4*cos(y)**3 + 105*sin(x)**4*cos(y)**2*tan(z) + &\n'
        '      105*sin(x)**4*cos(y)*tan(z)**2 + 35*sin(x)**4*tan(z)**3 + 35*sin( &\n'
        '      x)**3*cos(y)**4 + 140*sin(x)**3*cos(y)**3*tan(z) + 210*sin(x)**3* &\n'
        '      cos(y)**2*tan(z)**2 + 140*sin(x)**3*cos(y)*tan(z)**3 + 35*sin(x) &\n'
        '      **3*tan(z)**4 + 21*sin(x)**2*cos(y)**5 + 105*sin(x)**2*cos(y)**4* &\n'
        '      tan(z) + 210*sin(x)**2*cos(y)**3*tan(z)**2 + 210*sin(x)**2*cos(y) &\n'
        '      **2*tan(z)**3 + 105*sin(x)**2*cos(y)*tan(z)**4 + 21*sin(x)**2*tan &\n'
        '      (z)**5 + 7*sin(x)*cos(y)**6 + 42*sin(x)*cos(y)**5*tan(z) + 105* &\n'
        '      sin(x)*cos(y)**4*tan(z)**2 + 140*sin(x)*cos(y)**3*tan(z)**3 + 105 &\n'
        '      *sin(x)*cos(y)**2*tan(z)**4 + 42*sin(x)*cos(y)*tan(z)**5 + 7*sin( &\n'
        '      x)*tan(z)**6 + cos(y)**7 + 7*cos(y)**6*tan(z) + 21*cos(y)**5*tan( &\n'
        '      z)**2 + 35*cos(y)**4*tan(z)**3 + 35*cos(y)**3*tan(z)**4 + 21*cos( &\n'
        '      y)**2*tan(z)**5 + 7*cos(y)*tan(z)**6 + tan(z)**7\n'
        'end function\n'
        'REAL*8 function test2(x, y, z)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'REAL*8, intent(in) :: y\n'
        'REAL*8, intent(in) :: z\n'
        'test2 = cos(cos(cos(cos(cos(cos(cos(cos(x + y + z))))))))\n'
        'end function\n'
    )
    assert result[0][1] == expected
    assert result[1][0] == "file.h"
    expected = (
        'interface\n'
        'REAL*8 function test1(x, y, z)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'REAL*8, intent(in) :: y\n'
        'REAL*8, intent(in) :: z\n'
        'end function\n'
        'end interface\n'
        'interface\n'
        'REAL*8 function test2(x, y, z)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'REAL*8, intent(in) :: y\n'
        'REAL*8, intent(in) :: z\n'
        'end function\n'
        'end interface\n'
    )
    assert result[1][1] == expected


问题


面经


文章

微信
公众号

扫码关注公众号