python类sin()的实例源码

stroud1957.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, n):
        self.degree = 2
        self.dim = n

        n2 = fr(n, 2) if n % 2 == 0 else fr(n-1, 2)
        pts = [[
            [sqrt(fr(2, n+2)) * cos(2*k*i*pi / (n+1)) for i in range(n+1)],
            [sqrt(fr(2, n+2)) * sin(2*k*i*pi / (n+1)) for i in range(n+1)],
            ] for k in range(1, n2+1)]
        if n % 2 == 1:
            sqrt3pm = numpy.full(n+1, 1/sqrt(n+2))
            sqrt3pm[1::2] *= -1
            pts.append(sqrt3pm)
        pts = numpy.vstack(pts).T

        data = [(fr(1, n+1), pts)]

        self.points, self.weights = untangle(data)
        self.weights *= volume_unit_ball(n)
        return
test_tools.py 文件源码 项目:pymoskito 作者: cklb 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_lie_derivative(self):
        Lfh = pm.lie_derivatives(self.h, self.f, self.x, 0)
        self.assertEqual(Lfh, [self.h])

        Lfh = pm.lie_derivatives(self.h, self.f, self.x, 1)
        self.assertEqual(Lfh, [self.h,
                               sp.Matrix([-2*self._x1*self._x2**2
                                          - sp.sin(self._x1)*sp.cos(self._x2)])
                               ])
        Lfh = pm.lie_derivatives(self.h, self.f, self.x, 2)
        self.assertEqual(Lfh, [self.h,
                               sp.Matrix([-2*self._x1*self._x2**2
                                          - sp.sin(self._x1)*sp.cos(self._x2)]),
                               sp.Matrix([
                                   -self._x2**2*(
                                       -2*self._x2**2
                                       - sp.cos(self._x1)*sp.cos(self._x2)
                                   )
                                   + sp.sin(self._x1)*(
                                       - 4*self._x1*self._x2
                                       + sp.sin(self._x1)*sp.sin(self._x2)
                                   )])
                               ])
test_simplify.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_issue_3210():
    eqs = (sin(2)*cos(3) + sin(3)*cos(2),
        -sin(2)*sin(3) + cos(2)*cos(3),
        sin(2)*cos(3) - sin(3)*cos(2),
        sin(2)*sin(3) + cos(2)*cos(3),
        sin(2)*sin(3) + cos(2)*cos(3) + cos(2),
        sinh(2)*cosh(3) + sinh(3)*cosh(2),
        sinh(2)*sinh(3) + cosh(2)*cosh(3),
        )
    assert [trigsimp(e) for e in eqs] == [
        sin(5),
        cos(5),
        -sin(1),
        cos(1),
        cos(1) + cos(2),
        sinh(5),
        cosh(5),
        ]
test_simplify.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_simplify_other():
    assert simplify(sin(x)**2 + cos(x)**2) == 1
    assert simplify(gamma(x + 1)/gamma(x)) == x
    assert simplify(sin(x)**2 + cos(x)**2 + factorial(x)/gamma(x)) == 1 + x
    assert simplify(
        Eq(sin(x)**2 + cos(x)**2, factorial(x)/gamma(x))) == Eq(1, x)
    nc = symbols('nc', commutative=False)
    assert simplify(x + x*nc) == x*(1 + nc)
    # issue 6123
    # f = exp(-I*(k*sqrt(t) + x/(2*sqrt(t)))**2)
    # ans = integrate(f, (k, -oo, oo), conds='none')
    ans = I*(-pi*x*exp(-3*I*pi/4 + I*x**2/(4*t))*erf(x*exp(-3*I*pi/4)/
        (2*sqrt(t)))/(2*sqrt(t)) + pi*x*exp(-3*I*pi/4 + I*x**2/(4*t))/
        (2*sqrt(t)))*exp(-I*x**2/(4*t))/(sqrt(pi)*x) - I*sqrt(pi) * \
        (-erf(x*exp(I*pi/4)/(2*sqrt(t))) + 1)*exp(I*pi/4)/(2*sqrt(t))
    assert simplify(ans) == -(-1)**(S(3)/4)*sqrt(pi)/sqrt(t)
    # issue 6370
    assert simplify(2**(2 + x)/4) == 2**x
test_simplify.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_powsimp_polar():
    from sympy import polar_lift, exp_polar
    x, y, z = symbols('x y z')
    p, q, r = symbols('p q r', polar=True)

    assert (polar_lift(-1))**(2*x) == exp_polar(2*pi*I*x)
    assert powsimp(p**x * q**x) == (p*q)**x
    assert p**x * (1/p)**x == 1
    assert (1/p)**x == p**(-x)

    assert exp_polar(x)*exp_polar(y) == exp_polar(x)*exp_polar(y)
    assert powsimp(exp_polar(x)*exp_polar(y)) == exp_polar(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y) == \
        (p*exp_polar(1))**(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y, combine='exp') == \
        exp_polar(x + y)*p**(x + y)
    assert powsimp(
        exp_polar(x)*exp_polar(y)*exp_polar(2)*sin(x) + sin(y) + p**x*p**y) \
        == p**(x + y) + sin(x)*exp_polar(2 + x + y) + sin(y)
    assert powsimp(sin(exp_polar(x)*exp_polar(y))) == \
        sin(exp_polar(x)*exp_polar(y))
    assert powsimp(sin(exp_polar(x)*exp_polar(y)), deep=True) == \
        sin(exp_polar(x + y))
test_simplify.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_collect_order():
    a, b, x, t = symbols('a,b,x,t')

    assert collect(t + t*x + t*x**2 + O(x**3), t) == t*(1 + x + x**2 + O(x**3))
    assert collect(t + t*x + x**2 + O(x**3), t) == \
        t*(1 + x + O(x**3)) + x**2 + O(x**3)

    f = a*x + b*x + c*x**2 + d*x**2 + O(x**3)
    g = x*(a + b) + x**2*(c + d) + O(x**3)

    assert collect(f, x) == g
    assert collect(f, x, distribute_order_term=False) == g

    f = sin(a + b).series(b, 0, 10)

    assert collect(f, [sin(a), cos(a)]) == \
        sin(a)*cos(b).series(b, 0, 10) + cos(a)*sin(b).series(b, 0, 10)
    assert collect(f, [sin(a), cos(a)], distribute_order_term=False) == \
        sin(a)*cos(b).series(b, 0, 10).removeO() + \
        cos(a)*sin(b).series(b, 0, 10).removeO() + O(b**10)
test_simplify.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def test_besselsimp():
    from sympy import besselj, besseli, besselk, bessely, jn, yn, exp_polar, cosh, cosine_transform
    assert besselsimp(exp(-I*pi*y/2)*besseli(y, z*exp_polar(I*pi/2))) == \
        besselj(y, z)
    assert besselsimp(exp(-I*pi*a/2)*besseli(a, 2*sqrt(x)*exp_polar(I*pi/2))) == \
        besselj(a, 2*sqrt(x))
    assert besselsimp(sqrt(2)*sqrt(pi)*x**(S(1)/4)*exp(I*pi/4)*exp(-I*pi*a/2) *
                      besseli(-S(1)/2, sqrt(x)*exp_polar(I*pi/2)) *
                      besseli(a, sqrt(x)*exp_polar(I*pi/2))/2) == \
        besselj(a, sqrt(x)) * cos(sqrt(x))
    assert besselsimp(besseli(S(-1)/2, z)) == \
        sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(a, z*exp_polar(-I*pi/2))) == \
        exp(-I*pi*a/2)*besselj(a, z)
    assert cosine_transform(1/t*sin(a/t), t, y) == \
        sqrt(2)*sqrt(pi)*besselj(0, 2*sqrt(a)*sqrt(y))/2
test_simplify.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_issue_2827_trigsimp_methods():
    measure1 = lambda expr: len(str(expr))
    measure2 = lambda expr: -count_ops(expr)
                                       # Return the most complicated result
    expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
    ans = Matrix([1])
    M = Matrix([expr])
    assert trigsimp(M, method='fu', measure=measure1) == ans
    assert trigsimp(M, method='fu', measure=measure2) != ans
    # all methods should work with Basic expressions even if they
    # aren't Expr
    M = Matrix.eye(1)
    assert all(trigsimp(M, method=m) == M for m in
        'fu matching groebner old'.split())
    # watch for E in exptrigsimp, not only exp()
    eq = 1/sqrt(E) + E
    assert exptrigsimp(eq) == eq
test_basic.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_call():
    x, y = symbols('x y')
    # See the long history of this in issues 1927 and 2006.

    raises(TypeError, lambda: sin(x)({ x : 1, sin(x) : 2}))
    raises(TypeError, lambda: sin(x)(1))

    # No effect as there are no callables
    assert sin(x).rcall(1) == sin(x)
    assert (1 + sin(x)).rcall(1) == 1 + sin(x)

    # Effect in the pressence of callables
    l = Lambda(x, 2*x)
    assert (l + x).rcall(y) == 2*y + x
    assert (x**l).rcall(2) == x**4
    # TODO UndefinedFunction does not subclass Expr
    #f = Function('f')
    #assert (2*f)(x) == 2*f(x)

    assert (Q.real & Q.positive).rcall(x) == Q.real(x) & Q.positive(x)
test_sums_products.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_hypersum():
    from sympy import simplify, sin, hyper
    assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x)
    assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x)
    assert simplify(summation((-1)**n*x**(2*n + 1) /
        factorial(2*n + 1), (n, 3, oo))) == -x + sin(x) + x**3/6 - x**5/120

    assert summation(1/(n + 2)**3, (n, 1, oo)) == -S(9)/8 + zeta(3)
    assert summation(1/n**4, (n, 1, oo)) == pi**4/90

    s = summation(x**n*n, (n, -oo, 0))
    assert s.is_Piecewise
    assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2)
    assert s.args[0].args[1] == (abs(1/x) < 1)

    m = Symbol('n', integer=True, positive=True)
    assert summation(binomial(m, k), (k, 0, m)) == 2**m
test_kane.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_pend():
    q, u = dynamicsymbols('q u')
    qd, ud = dynamicsymbols('q u', 1)
    m, l, g = symbols('m l g')
    N = ReferenceFrame('N')
    P = Point('P')
    P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
    kd = [qd - u]

    FL = [(P, m * g * N.x)]
    pa = Particle('pa', P, m)
    BL = [pa]

    KM = KanesMethod(N, [q], [u], kd)
    KM.kanes_equations(FL, BL)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    rhs.simplify()
    assert expand(rhs[0]) == expand(-g / l * sin(q))
test_functions.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_dot_different_frames():
    assert dot(N.x, A.x) == cos(q1)
    assert dot(N.x, A.y) == -sin(q1)
    assert dot(N.x, A.z) == 0
    assert dot(N.y, A.x) == sin(q1)
    assert dot(N.y, A.y) == cos(q1)
    assert dot(N.y, A.z) == 0
    assert dot(N.z, A.x) == 0
    assert dot(N.z, A.y) == 0
    assert dot(N.z, A.z) == 1

    assert dot(N.x, A.x + A.y) == sqrt(2)*cos(q1 + pi/4) == dot(A.x + A.y, N.x)

    assert dot(A.x, C.x) == cos(q3)
    assert dot(A.x, C.y) == 0
    assert dot(A.x, C.z) == sin(q3)
    assert dot(A.y, C.x) == sin(q2)*sin(q3)
    assert dot(A.y, C.y) == cos(q2)
    assert dot(A.y, C.z) == -sin(q2)*cos(q3)
    assert dot(A.z, C.x) == -cos(q2)*sin(q3)
    assert dot(A.z, C.y) == sin(q2)
    assert dot(A.z, C.z) == cos(q2)*cos(q3)
test_functions.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_cross_different_frames():
    assert cross(N.x, A.x) == sin(q1)*A.z
    assert cross(N.x, A.y) == cos(q1)*A.z
    assert cross(N.x, A.z) == -sin(q1)*A.x - cos(q1)*A.y
    assert cross(N.y, A.x) == -cos(q1)*A.z
    assert cross(N.y, A.y) == sin(q1)*A.z
    assert cross(N.y, A.z) == cos(q1)*A.x - sin(q1)*A.y
    assert cross(N.z, A.x) == A.y
    assert cross(N.z, A.y) == -A.x
    assert cross(N.z, A.z) == 0

    assert cross(N.x, A.x) == sin(q1)*A.z
    assert cross(N.x, A.y) == cos(q1)*A.z
    assert cross(N.x, A.x + A.y) == sin(q1)*A.z + cos(q1)*A.z
    assert cross(A.x + A.y, N.x) == -sin(q1)*A.z - cos(q1)*A.z

    assert cross(A.x, C.x) == sin(q3)*C.y
    assert cross(A.x, C.y) == -sin(q3)*C.x + cos(q3)*C.z
    assert cross(A.x, C.z) == -cos(q3)*C.y
    assert cross(C.x, A.x) == -sin(q3)*C.y
    assert cross(C.y, A.x) == sin(q3)*C.x - cos(q3)*C.z
    assert cross(C.z, A.x) == cos(q3)*C.y
test_printing.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_vector_pretty_print():

    # TODO : The unit vectors should print with subscripts but they just
    # print as `n_x` instead of making `x` a subscritp with unicode.

    # TODO : The pretty print division does not print correctly here:
    # w = alpha * N.x + sin(omega) * N.y + alpha / beta * N.z

    pp = VectorPrettyPrinter()

    expected = u(' 2\na  n_x + b n_y + c\u22c5sin(\u03b1) n_z')

    assert expected == pp.doprint(v)
    assert expected == v._pretty().render()

    expected = u('\u03b1 n_x + sin(\u03c9) n_y + \u03b1\u22c5\u03b2 n_z')

    assert expected == pp.doprint(w)
    assert expected == w._pretty().render()
test_matrices.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_expand():
    m0 = Matrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]])
    # Test if expand() returns a matrix
    m1 = m0.expand()
    assert m1 == Matrix(
        [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]])

    a = Symbol('a', real=True)

    assert Matrix([exp(I*a)]).expand(complex=True) == \
        Matrix([cos(a) + I*sin(a)])

    assert Matrix([[0, 1, 2], [0, 0, -1], [0, 0, 0]]).exp() == Matrix([
        [1, 1, Rational(3, 2)],
        [0, 1, -1],
        [0, 0, 1]]
    )
test_interface.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_function_series1():
    """Create our new "sin" function."""

    class my_function(Function):

        def fdiff(self, argindex=1):
            return cos(self.args[0])

        @classmethod
        def eval(cls, arg):
            arg = sympify(arg)
            if arg == 0:
                return sympify(0)

    #Test that the taylor series is correct
    assert my_function(x).series(x, 0, 10) == sin(x).series(x, 0, 10)
    assert limit(my_function(x)/x, x, 0) == 1
test_interface.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_function_series2():
    """Create our new "cos" function."""

    class my_function2(Function):

        def fdiff(self, argindex=1):
            return -sin(self.args[0])

        @classmethod
        def eval(cls, arg):
            arg = sympify(arg)
            if arg == 0:
                return sympify(1)

    #Test that the taylor series is correct
    assert my_function2(x).series(x, 0, 10) == cos(x).series(x, 0, 10)
transforms.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _compute_transform(self, F, s, x, **hints):
        from sympy import postorder_traversal
        global _allowed
        if _allowed is None:
            from sympy import (
                exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh,
                coth, factorial, rf)
            _allowed = set(
                [exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth,
                 factorial, rf])
        for f in postorder_traversal(F):
            if f.is_Function and f.has(s) and f.func not in _allowed:
                raise IntegralTransformError('Inverse Mellin', F,
                                     'Component %s not recognised.' % f)
        strip = self.fundamental_strip
        return _inverse_mellin_transform(F, s, x, strip, **hints)
transforms.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True):
    """
    Compute a general sine or cosine-type transform
        F(k) = a int_0^oo b*sin(x*k) f(x) dx.
        F(k) = a int_0^oo b*cos(x*k) f(x) dx.

    For suitable choice of a and b, this reduces to the standard sine/cosine
    and inverse sine/cosine transforms.
    """
    F = integrate(a*f*K(b*x*k), (x, 0, oo))

    if not F.has(Integral):
        return _simplify(F, simplify), True

    if not F.is_Piecewise:
        raise IntegralTransformError(name, f, 'could not compute integral')

    F, cond = F.args[0]
    if F.has(Integral):
        raise IntegralTransformError(name, f, 'integral in unexpected form')

    return _simplify(F, simplify), cond
test_integrals.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_transform():
    a = Integral(x**2 + 1, (x, -1, 2))
    fx = x
    fy = 3*y + 1
    assert a.doit() == a.transform(fx, fy).doit()
    assert a.transform(fx, fy).transform(fy, fx) == a
    fx = 3*x + 1
    fy = y
    assert a.transform(fx, fy).transform(fy, fx) == a
    a = Integral(sin(1/x), (x, 0, 1))
    assert a.transform(x, 1/y) == Integral(sin(y)/y**2, (y, 1, oo))
    assert a.transform(x, 1/y).transform(y, 1/x) == a
    a = Integral(exp(-x**2), (x, -oo, oo))
    assert a.transform(x, 2*y) == Integral(2*exp(-4*y**2), (y, -oo, oo))
    # < 3 arg limit handled properly
    assert Integral(x, x).transform(x, a*y).doit() == \
        Integral(y*a**2, y).doit()
    _3 = S(3)
    assert Integral(x, (x, 0, -_3)).transform(x, 1/y).doit() == \
        Integral(-1/x**3, (x, -oo, -1/_3)).doit()
    assert Integral(x, (x, 0, _3)).transform(x, 1/y) == \
        Integral(y**(-3), (y, 1/_3, oo))
manualintegrate.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def trig_cotcsc_rule(integral):
    integrand, symbol = integral
    integrand = integrand.subs({
        1 / sympy.sin(symbol): sympy.csc(symbol),
        1 / sympy.tan(symbol): sympy.cot(symbol),
        sympy.cos(symbol) / sympy.tan(symbol): sympy.cot(symbol)
    })

    if any(integrand.has(f) for f in (sympy.cot, sympy.csc)):
        pattern, a, b, m, n = cotcsc_pattern(symbol)
        match = integrand.match(pattern)

        if match:
            a, b, m, n = match.get(a, 0),match.get(b, 0), match.get(m, 0), match.get(n, 0)
            return multiplexer({
                cotcsc_cotodd_condition: cotcsc_cotodd,
                cotcsc_csceven_condition: cotcsc_csceven
            })((a, b, m, n, integrand, symbol))
test_densetools.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_dup_clear_denoms():
    assert dup_clear_denoms([], QQ, ZZ) == (ZZ(1), [])

    assert dup_clear_denoms([QQ(1)], QQ, ZZ) == (ZZ(1), [QQ(1)])
    assert dup_clear_denoms([QQ(7)], QQ, ZZ) == (ZZ(1), [QQ(7)])

    assert dup_clear_denoms([QQ(7, 3)], QQ) == (ZZ(3), [QQ(7)])
    assert dup_clear_denoms([QQ(7, 3)], QQ, ZZ) == (ZZ(3), [QQ(7)])

    assert dup_clear_denoms(
        [QQ(3), QQ(1), QQ(0)], QQ, ZZ) == (ZZ(1), [QQ(3), QQ(1), QQ(0)])
    assert dup_clear_denoms(
        [QQ(1), QQ(1, 2), QQ(0)], QQ, ZZ) == (ZZ(2), [QQ(2), QQ(1), QQ(0)])

    assert dup_clear_denoms([QQ(3), QQ(
        1), QQ(0)], QQ, ZZ, convert=True) == (ZZ(1), [ZZ(3), ZZ(1), ZZ(0)])
    assert dup_clear_denoms([QQ(1), QQ(
        1, 2), QQ(0)], QQ, ZZ, convert=True) == (ZZ(2), [ZZ(2), ZZ(1), ZZ(0)])

    assert dup_clear_denoms(
        [EX(S(3)/2), EX(S(9)/4)], EX) == (EX(4), [EX(6), EX(9)])

    assert dup_clear_denoms([EX(7)], EX) == (EX(1), [EX(7)])
    assert dup_clear_denoms([EX(sin(x)/x), EX(0)], EX) == (EX(x), [EX(sin(x)), EX(0)])
test_codegen.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_output_arg_c():
    from sympy import sin, cos, Equality
    x, y, z = symbols("x,y,z")
    r = Routine("foo", [Equality(y, sin(x)), cos(x)])
    c = CCodeGen()
    result = c.write([r], "test", header=False, empty=False)
    assert result[0][0] == "test.c"
    expected = (
        '#include "test.h"\n'
        '#include <math.h>\n'
        'double foo(double x, double &y) {\n'
        '   y = sin(x);\n'
        '   return cos(x);\n'
        '}\n'
    )
    assert result[0][1] == expected
test_codegen.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_output_arg_f():
    from sympy import sin, cos, Equality
    x, y, z = symbols("x,y,z")
    r = Routine("foo", [Equality(y, sin(x)), cos(x)])
    c = FCodeGen()
    result = c.write([r], "test", header=False, empty=False)
    assert result[0][0] == "test.f90"
    assert result[0][1] == (
        'REAL*8 function foo(x, y)\n'
        'implicit none\n'
        'REAL*8, intent(in) :: x\n'
        'REAL*8, intent(out) :: y\n'
        'y = sin(x)\n'
        'foo = cos(x)\n'
        'end function\n'
    )
test_maxima.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_maxima_functions():
    assert parse_maxima('expand( (x+1)^2)') == x**2 + 2*x + 1
    assert parse_maxima('factor( x**2 + 2*x + 1)') == (x + 1)**2
    assert parse_maxima('2*cos(x)^2 + sin(x)^2') == 2*cos(x)**2 + sin(x)**2
    assert parse_maxima('trigexpand(sin(2*x)+cos(2*x))') == \
        -1 + 2*cos(x)**2 + 2*cos(x)*sin(x)
    assert parse_maxima('solve(x^2-4,x)') == [-2, 2]
    assert parse_maxima('limit((1+1/x)^x,x,inf)') == E
    assert parse_maxima('limit(sqrt(-x)/x,x,0,minus)') == -oo
    assert parse_maxima('diff(x^x, x)') == x**x*(1 + log(x))
    assert parse_maxima('sum(k, k, 1, n)', name_dict=dict(
        n=Symbol('n', integer=True),
        k=Symbol('k', integer=True)
    )) == (n**2 + n)/2
    assert parse_maxima('product(k, k, 1, n)', name_dict=dict(
        n=Symbol('n', integer=True),
        k=Symbol('k', integer=True)
    )) == factorial(n)
    assert parse_maxima('ratsimp((x^2-1)/(x+1))') == x - 1
    assert Abs( parse_maxima(
        'float(sec(%pi/3) + csc(%pi/3))') - 3.154700538379252) < 10**(-5)
spherical_latex.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def derivatives_in_spherical_coordinates():
    Print_Function()
    X = (r, th, phi) = symbols('r theta phi')
    curv = [[r*cos(phi)*sin(th), r*sin(phi)*sin(th), r*cos(th)], [1, r, r*sin(th)]]
    (er, eth, ephi, grad) = MV.setup('e_r e_theta e_phi', metric='[1,1,1]', coords=X, curv=curv)

    f = MV('f', 'scalar', fct=True)
    A = MV('A', 'vector', fct=True)
    B = MV('B', 'grade2', fct=True)

    print('f =', f)
    print('A =', A)
    print('B =', B)

    print('grad*f =', grad*f)
    print('grad|A =', grad | A)
    print('-I*(grad^A) =', -MV.I*(grad ^ A))
    print('grad^B =', grad ^ B)
    return
latex_check.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def derivatives_in_spherical_coordinates():
    Print_Function()
    X = (r, th, phi) = symbols('r theta phi')
    curv = [[r*cos(phi)*sin(th), r*sin(phi)*sin(th), r*cos(th)], [1, r, r*sin(th)]]
    (er, eth, ephi, grad) = MV.setup('e_r e_theta e_phi', metric='[1,1,1]', coords=X, curv=curv)

    f = MV('f', 'scalar', fct=True)
    A = MV('A', 'vector', fct=True)
    B = MV('B', 'grade2', fct=True)

    print('f =', f)
    print('A =', A)
    print('B =', B)

    print('grad*f =', grad*f)
    print('grad|A =', grad | A)
    print('-I*(grad^A) =', (-MV.I*(grad ^ A)).simplify())
    print('grad^B =', grad ^ B)
_external.py 文件源码 项目:qiskit-sdk-py 作者: QISKit 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def real(self, nested_scope=None):
        """Return the correspond floating point number."""
        op = self.children[0].name
        expr = self.children[1]
        dispatch = {
            'sin': sympy.sin,
            'cos': sympy.cos,
            'tan': sympy.tan,
            'asin': sympy.asin,
            'acos': sympy.acos,
            'atan': sympy.atan,
            'exp': sympy.exp,
            'ln': sympy.log,
            'sqrt': sympy.sqrt
        }
        if op in dispatch:
            arg = expr.real(nested_scope)
            return dispatch[op](arg)
        else:
            raise NodeException("internal error: undefined external")
_external.py 文件源码 项目:qiskit-sdk-py 作者: QISKit 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def sym(self, nested_scope=None):
        """Return the corresponding symbolic expression."""
        op = self.children[0].name
        expr = self.children[1]
        dispatch = {
            'sin': sympy.sin,
            'cos': sympy.cos,
            'tan': sympy.tan,
            'asin': sympy.asin,
            'acos': sympy.acos,
            'atan': sympy.atan,
            'exp': sympy.exp,
            'ln': sympy.log,
            'sqrt': sympy.sqrt
        }
        if op in dispatch:
            arg = expr.sym(nested_scope)
            return dispatch[op](arg)
        else:
            raise NodeException("internal error: undefined external")
two_wheel.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def two_wheel_2d_model(x, u, dt):
    """Two wheel 2D motion model

    Parameters
    ----------
    x :

    u :

    dt :


    Returns
    -------

    """
    gdot = np.array([[u[0, 0] * cos(x[2, 0]) * dt],
                     [u[0, 0] * sin(x[2, 0]) * dt],
                     [u[1, 0] * dt]])

    return x + gdot


问题


面经


文章

微信
公众号

扫码关注公众号