python类log()的实例源码

test_hyperexpand.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_hyperexpand_bases():
    assert hyperexpand(hyper([2], [a], z)) == \
        a + z**(-a + 1)*(-a**2 + 3*a + z*(a - 1) - 2)*exp(z)* \
        lowergamma(a - 1, z) - 1
    # TODO [a+1, a-S.Half], [2*a]
    assert hyperexpand(hyper([1, 2], [3], z)) == -2/z - 2*log(-z + 1)/z**2
    assert hyperexpand(hyper([S.Half, 2], [S(3)/2], z)) == \
        -1/(2*z - 2) + atanh(sqrt(z))/sqrt(z)/2
    assert hyperexpand(hyper([S(1)/2, S(1)/2], [S(5)/2], z)) == \
        (-3*z + 3)/4/(z*sqrt(-z + 1)) \
        + (6*z - 3)*asin(sqrt(z))/(4*z**(S(3)/2))
    assert hyperexpand(hyper([1, 2], [S(3)/2], z)) == -1/(2*z - 2) \
        - asin(sqrt(z))/(sqrt(z)*(2*z - 2)*sqrt(-z + 1))
    assert hyperexpand(hyper([-S.Half - 1, 1, 2], [S.Half, 3], z)) == \
        sqrt(z)*(6*z/7 - S(6)/5)*atanh(sqrt(z)) \
        + (-30*z**2 + 32*z - 6)/35/z - 6*log(-z + 1)/(35*z**2)
    assert hyperexpand(hyper([1 + S.Half, 1, 1], [2, 2], z)) == \
        -4*log(sqrt(-z + 1)/2 + S(1)/2)/z
    # TODO hyperexpand(hyper([a], [2*a + 1], z))
    # TODO [S.Half, a], [S(3)/2, a+1]
    assert hyperexpand(hyper([2], [b, 1], z)) == \
        z**(-b/2 + S(1)/2)*besseli(b - 1, 2*sqrt(z))*gamma(b) \
        + z**(-b/2 + 1)*besseli(b, 2*sqrt(z))*gamma(b)
    # TODO [a], [a - S.Half, 2*a]
power.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def _eval_power(self, other):
        from sympy.functions.elementary.exponential import log

        b, e = self.as_base_exp()
        b_nneg = b.is_nonnegative
        if b.is_real and not b_nneg and e.is_even:
            b = abs(b)
            b_nneg = True

        # Special case for when b is nan. See pull req 1714 for details
        if b is S.NaN:
            smallarg = abs(e).is_negative
        else:
            smallarg = (abs(e) - abs(S.Pi/log(b))).is_negative
        if (other.is_Rational and other.q == 2 and
                e.is_real is False and smallarg is False):
            return -self.func(b, e*other)
        if (other.is_integer or
            e.is_real and (b_nneg or (abs(e) < 1) == True) or
            e.is_real is False and smallarg is True or
                b.is_polar):
            return self.func(b, e*other)
power.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def _eval_is_positive(self):
        if self.base.is_positive:
            if self.exp.is_real:
                return True
        elif self.base.is_negative:
            if self.exp.is_even:
                return True
            if self.exp.is_odd:
                return False
        elif self.base.is_nonpositive:
            if self.exp.is_odd:
                return False
        elif self.base.is_imaginary:
            if self.exp.is_integer:
                m = self.exp % 4
                if m.is_zero:
                    return True
                if m.is_integer and m.is_zero is False:
                    return False
            if self.exp.is_imaginary:
                return C.log(self.base).is_imaginary
test_error_functions.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test__eis():
    assert _eis(z).diff(z) == -_eis(z) + 1/z

    assert _eis(1/z).series(z) == \
        z + z**2 + 2*z**3 + 6*z**4 + 24*z**5 + O(z**6)

    assert Ei(z).rewrite('tractable') == exp(z)*_eis(z)
    assert li(z).rewrite('tractable') == z*_eis(log(z))

    assert _eis(z).rewrite('intractable') == exp(-z)*Ei(z)

    assert expand(li(z).rewrite('tractable').diff(z).rewrite('intractable')) \
        == li(z).diff(z)

    assert expand(Ei(z).rewrite('tractable').diff(z).rewrite('intractable')) \
        == Ei(z).diff(z)

    assert _eis(z).series(z, n=3) == EulerGamma + log(z) + z*(-log(z) - \
        EulerGamma + 1) + z**2*(log(z)/2 - S(3)/4 + EulerGamma/2) + O(z**3*log(z))
zeta_functions.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _eval_expand_func(self, **hints):
        from sympy import log, expand_mul, Dummy, exp_polar, I
        s, z = self.args
        if s == 1:
            return -log(1 + exp_polar(-I*pi)*z)
        if s.is_Integer and s <= 0:
            u = Dummy('u')
            start = u/(1 - u)
            for _ in range(-s):
                start = u*start.diff(u)
            return expand_mul(start).subs(u, z)
        return polylog(s, z)

###############################################################################
###################### HURWITZ GENERALIZED ZETA FUNCTION ######################
###############################################################################
complexes.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _getunbranched(cls, ar):
        from sympy import exp_polar, log, polar_lift
        if ar.is_Mul:
            args = ar.args
        else:
            args = [ar]
        unbranched = 0
        for a in args:
            if not a.is_polar:
                unbranched += arg(a)
            elif a.func is exp_polar:
                unbranched += a.exp.as_real_imag()[1]
            elif a.is_Pow:
                re, im = a.exp.as_real_imag()
                unbranched += re*unbranched_argument(
                    a.base) + im*log(abs(a.base))
            elif a.func is polar_lift:
                unbranched += arg(a.args[0])
            else:
                return None
        return unbranched
test_maxima.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_maxima_functions():
    assert parse_maxima('expand( (x+1)^2)') == x**2 + 2*x + 1
    assert parse_maxima('factor( x**2 + 2*x + 1)') == (x + 1)**2
    assert parse_maxima('2*cos(x)^2 + sin(x)^2') == 2*cos(x)**2 + sin(x)**2
    assert parse_maxima('trigexpand(sin(2*x)+cos(2*x))') == \
        -1 + 2*cos(x)**2 + 2*cos(x)*sin(x)
    assert parse_maxima('solve(x^2-4,x)') == [-2, 2]
    assert parse_maxima('limit((1+1/x)^x,x,inf)') == E
    assert parse_maxima('limit(sqrt(-x)/x,x,0,minus)') == -oo
    assert parse_maxima('diff(x^x, x)') == x**x*(1 + log(x))
    assert parse_maxima('sum(k, k, 1, n)', name_dict=dict(
        n=Symbol('n', integer=True),
        k=Symbol('k', integer=True)
    )) == (n**2 + n)/2
    assert parse_maxima('product(k, k, 1, n)', name_dict=dict(
        n=Symbol('n', integer=True),
        k=Symbol('k', integer=True)
    )) == factorial(n)
    assert parse_maxima('ratsimp((x^2-1)/(x+1))') == x - 1
    assert Abs( parse_maxima(
        'float(sec(%pi/3) + csc(%pi/3))') - 3.154700538379252) < 10**(-5)
manifold_check_latex.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def Simple_manifold_with_scalar_function_derivative():
    Print_Function()
    coords = (x, y, z) = symbols('x y z')
    basis = (e1, e2, e3, grad) = MV.setup('e_1 e_2 e_3', metric='[1,1,1]', coords=coords)
    # Define surface
    mfvar = (u, v) = symbols('u v')
    X = u*e1 + v*e2 + (u**2 + v**2)*e3
    print('\\f{X}{u,v} =', X)
    MF = Manifold(X, mfvar)
    (eu, ev) = MF.Basis()
    # Define field on the surface.
    g = (v + 1)*log(u)

    print('\\f{g}{u,v} =', g)

    # Method 1: Using old Manifold routines.
    VectorDerivative = (MF.rbasis[0]/MF.E_sq)*diff(g, u) + (MF.rbasis[1]/MF.E_sq)*diff(g, v)
    print('\\eval{\\nabla g}{u=1,v=0} =', VectorDerivative.subs({u: 1, v: 0}))

    # Method 2: Using new Manifold routines.
    dg = MF.Grad(g)
    print('\\eval{\\f{Grad}{g}}{u=1,v=0} =', dg.subs({u: 1, v: 0}))
    dg = MF.grad*g
    print('\\eval{\\nabla g}{u=1,v=0} =', dg.subs({u: 1, v: 0}))
    return
limits_examples.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def main():
    x = Symbol("x")
    a = Symbol("a")
    h = Symbol("h")

    show( limit(sqrt(x**2 - 5*x + 6) - x, x, oo), -Rational(5)/2 )

    show( limit(x*(sqrt(x**2 + 1) - x), x, oo), Rational(1)/2 )

    show( limit(x - sqrt3(x**3 - 1), x, oo), Rational(0) )

    show( limit(log(1 + exp(x))/x, x, -oo), Rational(0) )

    show( limit(log(1 + exp(x))/x, x, oo), Rational(1) )

    show( limit(sin(3*x)/x, x, 0), Rational(3) )

    show( limit(sin(5*x)/sin(2*x), x, 0), Rational(5)/2 )

    show( limit(((x - 1)/(x + 1))**x, x, oo), exp(-2))
substitution.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def main():
    x = sympy.Symbol('x')
    y = sympy.Symbol('y')

    e = 1/sympy.cos(x)
    print()
    pprint(e)
    print('\n')
    pprint(e.subs(sympy.cos(x), y))
    print('\n')
    pprint(e.subs(sympy.cos(x), y).subs(y, x**2))

    e = 1/sympy.log(x)
    e = e.subs(x, sympy.Float("2.71828"))
    print('\n')
    pprint(e)
    print('\n')
    pprint(e.evalf())
    print()
_external.py 文件源码 项目:qiskit-sdk-py 作者: QISKit 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def real(self, nested_scope=None):
        """Return the correspond floating point number."""
        op = self.children[0].name
        expr = self.children[1]
        dispatch = {
            'sin': sympy.sin,
            'cos': sympy.cos,
            'tan': sympy.tan,
            'asin': sympy.asin,
            'acos': sympy.acos,
            'atan': sympy.atan,
            'exp': sympy.exp,
            'ln': sympy.log,
            'sqrt': sympy.sqrt
        }
        if op in dispatch:
            arg = expr.real(nested_scope)
            return dispatch[op](arg)
        else:
            raise NodeException("internal error: undefined external")
_external.py 文件源码 项目:qiskit-sdk-py 作者: QISKit 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def sym(self, nested_scope=None):
        """Return the corresponding symbolic expression."""
        op = self.children[0].name
        expr = self.children[1]
        dispatch = {
            'sin': sympy.sin,
            'cos': sympy.cos,
            'tan': sympy.tan,
            'asin': sympy.asin,
            'acos': sympy.acos,
            'atan': sympy.atan,
            'exp': sympy.exp,
            'ln': sympy.log,
            'sqrt': sympy.sqrt
        }
        if op in dispatch:
            arg = expr.sym(nested_scope)
            return dispatch[op](arg)
        else:
            raise NodeException("internal error: undefined external")
get_S95.py 文件源码 项目:LHC_recast 作者: kazuki-sakurai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_S95(b0, sigma):

    S95 = sy.Symbol('S95', positive = True, real = True)
    b = sy.Symbol('b', positive = True)
    chi21 = sy.Symbol('chi21')
    chi22 = sy.Symbol('chi22')

    chi2 = 3.84
    N = b0 

    replacements = [(b, (b0 - S95 - sigma**2)/2 + 1./2*((b0 - S95 - sigma**2)**2 + 4*(sigma**2*N - S95*sigma**2 + S95*b0))**0.5)]

    replacements2 = [(S95, 0.)]

    chi21 = -2*( N*sy.log(S95 + b) - (S95 + b) - ((b-b0)/sigma)**2)

    chi21 = chi21.subs(replacements)
    chi22 = chi21.subs(replacements2)

    eq = chi2 - chi21 + chi22

    S95_new = sy.nsolve(eq, S95, 1)

    return float(S95_new)
test_hyperexpand.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_hyperexpand_bases():
    assert hyperexpand(hyper([2], [a], z)) == \
        a + z**(-a + 1)*(-a**2 + 3*a + z*(a - 1) - 2)*exp(z)* \
        lowergamma(a - 1, z) - 1
    # TODO [a+1, a-S.Half], [2*a]
    assert hyperexpand(hyper([1, 2], [3], z)) == -2/z - 2*log(-z + 1)/z**2
    assert hyperexpand(hyper([S.Half, 2], [S(3)/2], z)) == \
        -1/(2*z - 2) + atanh(sqrt(z))/sqrt(z)/2
    assert hyperexpand(hyper([S(1)/2, S(1)/2], [S(5)/2], z)) == \
        (-3*z + 3)/4/(z*sqrt(-z + 1)) \
        + (6*z - 3)*asin(sqrt(z))/(4*z**(S(3)/2))
    assert hyperexpand(hyper([1, 2], [S(3)/2], z)) == -1/(2*z - 2) \
        - asin(sqrt(z))/(sqrt(z)*(2*z - 2)*sqrt(-z + 1))
    assert hyperexpand(hyper([-S.Half - 1, 1, 2], [S.Half, 3], z)) == \
        sqrt(z)*(6*z/7 - S(6)/5)*atanh(sqrt(z)) \
        + (-30*z**2 + 32*z - 6)/35/z - 6*log(-z + 1)/(35*z**2)
    assert hyperexpand(hyper([1 + S.Half, 1, 1], [2, 2], z)) == \
        -4*log(sqrt(-z + 1)/2 + S(1)/2)/z
    # TODO hyperexpand(hyper([a], [2*a + 1], z))
    # TODO [S.Half, a], [S(3)/2, a+1]
    assert hyperexpand(hyper([2], [b, 1], z)) == \
        z**(-b/2 + S(1)/2)*besseli(b - 1, 2*sqrt(z))*gamma(b) \
        + z**(-b/2 + 1)*besseli(b, 2*sqrt(z))*gamma(b)
    # TODO [a], [a - S.Half, 2*a]
power.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _eval_is_positive(self):
        from sympy import log
        if self.base == self.exp:
            if self.base.is_nonnegative:
                return True
        elif self.base.is_positive:
            if self.exp.is_real:
                return True
        elif self.base.is_negative:
            if self.exp.is_even:
                return True
            if self.exp.is_odd:
                return False
        elif self.base.is_nonpositive:
            if self.exp.is_odd:
                return False
        elif self.base.is_imaginary:
            if self.exp.is_integer:
                m = self.exp % 4
                if m.is_zero:
                    return True
                if m.is_integer and m.is_zero is False:
                    return False
            if self.exp.is_imaginary:
                return log(self.base).is_imaginary
expr.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def is_number(self):
        """Returns True if 'self' has no free symbols.
        It will be faster than `if not self.free_symbols`, however, since
        `is_number` will fail as soon as it hits a free symbol.

        Examples
        ========

        >>> from sympy import log, Integral
        >>> from sympy.abc import x

        >>> x.is_number
        False
        >>> (2*x).is_number
        False
        >>> (2 + log(2)).is_number
        True
        >>> (2 + Integral(2, x)).is_number
        False
        >>> (2 + Integral(2, (x, 1, 2))).is_number
        True

        """
        return all(obj.is_number for obj in self.args)
expr.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def compute_leading_term(self, x, logx=None):
        """
        as_leading_term is only allowed for results of .series()
        This is a wrapper to compute a series first.
        """
        from sympy import Dummy, log
        from sympy.series.gruntz import calculate_series

        if self.removeO() == 0:
            return self

        if logx is None:
            d = Dummy('logx')
            s = calculate_series(self, x, d).subs(d, log(x))
        else:
            s = calculate_series(self, x, logx)

        return s.as_leading_term(x)
test_arrayop.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_derivative_by_array():
    from sympy.abc import a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z

    bexpr = x*y**2*exp(z)*log(t)
    sexpr = sin(bexpr)
    cexpr = cos(bexpr)

    a = Array([sexpr])

    assert derive_by_array(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t
    assert derive_by_array(sexpr, [x, y, z]) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr])
    assert derive_by_array(a, [x, y, z]) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]])

    assert derive_by_array(sexpr, [[x, y], [z, t]]) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]])
    assert derive_by_array(a, [[x, y], [z, t]]) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]])
    assert derive_by_array([[x, y], [z, t]], [x, y]) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]])
    assert derive_by_array([[x, y], [z, t]], [[x, y], [z, t]]) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]],
                                                                         [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
test_error_functions.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test__eis():
    assert _eis(z).diff(z) == -_eis(z) + 1/z

    assert _eis(1/z).series(z) == \
        z + z**2 + 2*z**3 + 6*z**4 + 24*z**5 + O(z**6)

    assert Ei(z).rewrite('tractable') == exp(z)*_eis(z)
    assert li(z).rewrite('tractable') == z*_eis(log(z))

    assert _eis(z).rewrite('intractable') == exp(-z)*Ei(z)

    assert expand(li(z).rewrite('tractable').diff(z).rewrite('intractable')) \
        == li(z).diff(z)

    assert expand(Ei(z).rewrite('tractable').diff(z).rewrite('intractable')) \
        == Ei(z).diff(z)

    assert _eis(z).series(z, n=3) == EulerGamma + log(z) + z*(-log(z) - \
        EulerGamma + 1) + z**2*(log(z)/2 - S(3)/4 + EulerGamma/2) + O(z**3*log(z))
complexes.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _getunbranched(cls, ar):
        from sympy import exp_polar, log, polar_lift
        if ar.is_Mul:
            args = ar.args
        else:
            args = [ar]
        unbranched = 0
        for a in args:
            if not a.is_polar:
                unbranched += arg(a)
            elif a.func is exp_polar:
                unbranched += a.exp.as_real_imag()[1]
            elif a.is_Pow:
                re, im = a.exp.as_real_imag()
                unbranched += re*unbranched_argument(
                    a.base) + im*log(abs(a.base))
            elif a.func is polar_lift:
                unbranched += arg(a.args[0])
            else:
                return None
        return unbranched
manualintegrate.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def power_rule(integral):
    integrand, symbol = integral
    base, exp = integrand.as_base_exp()

    if symbol not in exp.free_symbols and isinstance(base, sympy.Symbol):
        if sympy.simplify(exp + 1) == 0:
            return ReciprocalRule(base, integrand, symbol)
        return PowerRule(base, exp, integrand, symbol)
    elif symbol not in base.free_symbols and isinstance(exp, sympy.Symbol):
        rule = ExpRule(base, exp, integrand, symbol)

        if fuzzy_not(sympy.log(base).is_zero):
            return rule
        elif sympy.log(base).is_zero:
            return ConstantRule(1, 1, symbol)

        return PiecewiseRule([
            (ConstantRule(1, 1, symbol), sympy.Eq(sympy.log(base), 0)),
            (rule, True)
        ], integrand, symbol)
test_maxima.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_maxima_functions():
    assert parse_maxima('expand( (x+1)^2)') == x**2 + 2*x + 1
    assert parse_maxima('factor( x**2 + 2*x + 1)') == (x + 1)**2
    assert parse_maxima('2*cos(x)^2 + sin(x)^2') == 2*cos(x)**2 + sin(x)**2
    assert parse_maxima('trigexpand(sin(2*x)+cos(2*x))') == \
        -1 + 2*cos(x)**2 + 2*cos(x)*sin(x)
    assert parse_maxima('solve(x^2-4,x)') == [-2, 2]
    assert parse_maxima('limit((1+1/x)^x,x,inf)') == E
    assert parse_maxima('limit(sqrt(-x)/x,x,0,minus)') == -oo
    assert parse_maxima('diff(x^x, x)') == x**x*(1 + log(x))
    assert parse_maxima('sum(k, k, 1, n)', name_dict=dict(
        n=Symbol('n', integer=True),
        k=Symbol('k', integer=True)
    )) == (n**2 + n)/2
    assert parse_maxima('product(k, k, 1, n)', name_dict=dict(
        n=Symbol('n', integer=True),
        k=Symbol('k', integer=True)
    )) == factorial(n)
    assert parse_maxima('ratsimp((x^2-1)/(x+1))') == x - 1
    assert Abs( parse_maxima(
        'float(sec(%pi/3) + csc(%pi/3))') - 3.154700538379252) < 10**(-5)
modelbase.py 文件源码 项目:pymake 作者: dtrckd 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def fdebug(self):

        theta = self.N_theta_right
        phi = self.N_phi
        dma = self.frontend.data_ma

        _theta, _phi = self._reduce_latent()
        print(_theta.sum())
        print(_phi.sum())

        p_ij = _theta.dot(_phi).dot(_theta.T)
        pij = self.data_A * p_ij + self.data_B

        ll = - np.log(pij).sum() / self._len['nnz']

        print(dma.sum())
        print(p_ij.sum())
        print(pij.sum())
        print(ll)
compute_stirling.py 文件源码 项目:pymake 作者: dtrckd 项目源码 文件源码 阅读 73 收藏 0 点赞 0 评论 0
def recursive_line(self, new_line=5246):
        stir = self.load()
        J = stir.shape[0]
        K = stir.shape[1]
        for x in range(new_line):
            n = J + x
            new_l =  np.ones((1, K)) * np.inf
            print(n)
            for m in range(1,K):
                if m > n:
                    continue
                elif m == n:
                    new_l[0, m] = 0
                elif m == 1:
                    new_l[0, 1] = logsumexp( [  np.log(n-1) + stir[n-1, m] ] )
                else:
                    new_l[0, m] = logsumexp( [ stir[n-1, m-1] , np.log(n-1) + stir[n-1, m] ] )
            stir = np.vstack((stir, new_l))

        #np.save('stirling.npy', stir)
        #np.load('stirling.npy')
        return stir
compute_stirling.py 文件源码 项目:pymake 作者: dtrckd 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def recursive_row(self, new_row=''):
        stir = np.load('stirling.npy')
        J = stir.shape[0]
        K = stir.shape[1]
        x = 0
        while stir.shape[0] != stir.shape[1]:
            m = K + x
            new_c =  np.ones((J, 1)) * np.inf
            stir = np.hstack((stir, new_c))
            print(m)
            for n in range(K,J):
                if m > n:
                    continue
                elif m == n:
                    stir[n, m] = 0

                else:
                    stir[n,m] = logsumexp( [ stir[n-1, m-1] , np.log(n-1) + stir[n-1, m] ] )
            x += 1

        #np.save('stirling.npy', stir)
        #np.load('stirling.npy',)
        return stir
radial_profiles.py 文件源码 项目:formulas 作者: jzuhone 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def NFW_mass_profile(r="r", rho_s="rho_s", r_s="r_s"):
    """
    An NFW mass profile (Navarro, J.F., Frenk, C.S.,
    & White, S.D.M. 1996, ApJ, 462, 563).

    Parameters
    ----------
    rho_s : string
        The symbol for the scale density of the profile.
    r_s : string
        The symbol for the scale radius.
    """
    r, rho_s, r_s = symbols((r, rho_s, r_s))
    x = r/r_s
    profile = 4*pi*rho_s*r_s**3*(log(1+x)-x/(1+x))
    return Formula1D(profile, r, [rho_s, r_s])
hw4.py 文件源码 项目:caltech-machine-learning 作者: zhiyanfoo 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def solved_vc_inequality(probability, error, approximate_datapoints_needed):
    n = Symbol('n')
    return nsolve(log(4) + 10 * log(2*n) - 1/8 * error ** 2 * n - log(probability), n, approximate_datapoints_needed)
hw4.py 文件源码 项目:caltech-machine-learning 作者: zhiyanfoo 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def original_vc_bound(n, delta, growth_function):
    return sqrt(8/n * log(4*growth_function(2*n)/delta))
hw4.py 文件源码 项目:caltech-machine-learning 作者: zhiyanfoo 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def rademacher_penalty_bound(n, delta, growth_function):
    return sqrt(2 * log(2 * n * growth_function(n)) / n) + sqrt(2/n * log(1/delta)) + 1/n
hw4.py 文件源码 项目:caltech-machine-learning 作者: zhiyanfoo 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def parrondo_van_den_broek_right(error, n, delta, growth_function):
    return sqrt(1/n * (2 * error + log(6 * growth_function(2*n)/delta)))


问题


面经


文章

微信
公众号

扫码关注公众号