python类pi()的实例源码

compilef.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_clambdify():
    x = Symbol('x')
    y = Symbol('y')
    z = Symbol('z')
    f1 = sqrt(x*y)
    pf1 = lambdify((x, y), f1, 'math')
    cf1 = clambdify((x, y), f1)
    for i in xrange(10):
        if cf1(i, 10 - i) != pf1(i, 10 - i):
            raise ValueError("Values should be equal")
    f2 = (x - y) / z * pi
    pf2 = lambdify((x, y, z), f2, 'math')
    cf2 = clambdify((x, y, z), f2)
    if round(pf2(1, 2, 3), 14) != round(cf2(1, 2, 3), 14):
        raise ValueError("Values should be equal")
    # FIXME: slight difference in precision
stroud1957.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, n):
        self.degree = 2
        self.dim = n

        n2 = fr(n, 2) if n % 2 == 0 else fr(n-1, 2)
        pts = [[
            [sqrt(fr(2, n+2)) * cos(2*k*i*pi / (n+1)) for i in range(n+1)],
            [sqrt(fr(2, n+2)) * sin(2*k*i*pi / (n+1)) for i in range(n+1)],
            ] for k in range(1, n2+1)]
        if n % 2 == 1:
            sqrt3pm = numpy.full(n+1, 1/sqrt(n+2))
            sqrt3pm[1::2] *= -1
            pts.append(sqrt3pm)
        pts = numpy.vstack(pts).T

        data = [(fr(1, n+1), pts)]

        self.points, self.weights = untangle(data)
        self.weights *= volume_unit_ball(n)
        return
test_arit.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_pow_E():
    assert 2**(y/log(2)) == S.Exp1**y
    assert 2**(y/log(2)/3) == S.Exp1**(y/3)
    assert 3**(1/log(-3)) != S.Exp1
    assert (3 + 2*I)**(1/(log(-3 - 2*I) + I*pi)) == S.Exp1
    assert (4 + 2*I)**(1/(log(-4 - 2*I) + I*pi)) == S.Exp1
    assert (3 + 2*I)**(1/(log(-3 - 2*I, 3)/2 + I*pi/log(3)/2)) == 9
    assert (3 + 2*I)**(1/(log(3 + 2*I, 3)/2)) == 9
    # every time tests are run they will affirm with a different random
    # value that this identity holds
    while 1:
        b = x._random()
        r, i = b.as_real_imag()
        if i:
            break
    assert test_numerically(b**(1/(log(-b) + sign(i)*I*pi).n()), S.Exp1)
waves.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def equation(self, type='cosine'):
        """
        Returns equation of the wave.

        Examples
        ========

        >>> from sympy import symbols
        >>> from sympy.physics.optics import TWave
        >>> A, phi, f = symbols('A, phi, f')
        >>> w = TWave(A, f, phi)
        >>> w.equation('cosine')
        A*cos(2*pi*f*t + phi)
        """
        if not isinstance(type, str):
            raise TypeError("type can only be a string.")
        if type == 'cosine':
            return self._amplitude*cos(self.angular_velocity*Symbol('t') + self._phase)
test_waves.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_twave():
    A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f')
    c = Symbol('c')  # Speed of light in vacuum
    n = Symbol('n')  # Refractive index
    t = Symbol('t')  # Time
    w1 = TWave(A1, f, phi1)
    w2 = TWave(A2, f, phi2)
    assert w1.amplitude == A1
    assert w1.frequency == f
    assert w1.phase == phi1
    assert w1.wavelength == c/(f*n)
    assert w1.time_period == 1/f
    w3 = w1 + w2
    assert w3.amplitude == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)
    assert w3.frequency == f
    assert w3.wavelength == c/(f*n)
    assert w3.time_period == 1/f
    assert w3.angular_velocity == 2*pi*f
    assert w3.equation() == sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2)*cos(2*pi*f*t + phi1 + phi2)
test_cartesian.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_p():
    assert Px.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity))
    assert qapply(Px*PxKet(px)) == px*PxKet(px)
    assert PxKet(px).dual_class() == PxBra
    assert PxBra(x).dual_class() == PxKet
    assert (Dagger(PxKet(py))*PxKet(px)).doit() == DiracDelta(px - py)
    assert (XBra(x)*PxKet(px)).doit() == \
        exp(I*x*px/hbar)/sqrt(2*pi*hbar)
    assert represent(PxKet(px)) == DiracDelta(px - px_1)

    rep_x = represent(PxOp(), basis=XOp)
    assert rep_x == -hbar*I*DiracDelta(x_1 - x_2)*DifferentialOperator(x_1)
    assert rep_x == represent(PxOp(), basis=XOp())
    assert rep_x == represent(PxOp(), basis=XKet)
    assert rep_x == represent(PxOp(), basis=XKet())

    assert represent(PxOp()*XKet(), basis=XKet) == \
        -hbar*I*DiracDelta(x - x_2)*DifferentialOperator(x)
    assert represent(XBra("y")*PxOp()*XKet(), basis=XKet) == \
        -hbar*I*DiracDelta(x - y)*DifferentialOperator(x)
test_qft.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_quantum_fourier():
    assert QFT(0, 3).decompose() == \
        SwapGate(0, 2)*HadamardGate(0)*CGate((0,), PhaseGate(1)) * \
        HadamardGate(1)*CGate((0,), TGate(2))*CGate((1,), PhaseGate(2)) * \
        HadamardGate(2)

    assert IQFT(0, 3).decompose() == \
        HadamardGate(2)*CGate((1,), RkGate(2, -2))*CGate((0,), RkGate(2, -3)) * \
        HadamardGate(1)*CGate((0,), RkGate(1, -2))*HadamardGate(0)*SwapGate(0, 2)

    assert represent(QFT(0, 3), nqubits=3) == \
        Matrix([[exp(2*pi*I/8)**(i*j % 8)/sqrt(8) for i in range(8)] for j in range(8)])

    assert QFT(0, 4).decompose()  # non-trivial decomposition
    assert qapply(QFT(0, 3).decompose()*Qubit(0, 0, 0)).expand() == qapply(
        HadamardGate(0)*HadamardGate(1)*HadamardGate(2)*Qubit(0, 0, 0)
    ).expand()
test_functions.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_dot_different_frames():
    assert dot(N.x, A.x) == cos(q1)
    assert dot(N.x, A.y) == -sin(q1)
    assert dot(N.x, A.z) == 0
    assert dot(N.y, A.x) == sin(q1)
    assert dot(N.y, A.y) == cos(q1)
    assert dot(N.y, A.z) == 0
    assert dot(N.z, A.x) == 0
    assert dot(N.z, A.y) == 0
    assert dot(N.z, A.z) == 1

    assert dot(N.x, A.x + A.y) == sqrt(2)*cos(q1 + pi/4) == dot(A.x + A.y, N.x)

    assert dot(A.x, C.x) == cos(q3)
    assert dot(A.x, C.y) == 0
    assert dot(A.x, C.z) == sin(q3)
    assert dot(A.y, C.x) == sin(q2)*sin(q3)
    assert dot(A.y, C.y) == cos(q2)
    assert dot(A.y, C.z) == -sin(q2)*cos(q3)
    assert dot(A.z, C.x) == -cos(q2)*sin(q3)
    assert dot(A.z, C.y) == sin(q2)
    assert dot(A.z, C.z) == cos(q2)*cos(q3)
test_vector.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_vector_simplify():
    x, y, z, k, n, m, w, f, s, A = symbols('x, y, z, k, n, m, w, f, s, A')
    N = ReferenceFrame('N')

    test1 = (1 / x + 1 / y) * N.x
    assert (test1 & N.x) != (x + y) / (x * y)
    test1 = test1.simplify()
    assert (test1 & N.x) == (x + y) / (x * y)

    test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * N.x
    test2 = test2.simplify()
    assert (test2 & N.x) == (A**2 * s**4 / (4 * pi * k * m**3))

    test3 = ((4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)) * N.x
    test3 = test3.simplify()
    assert (test3 & N.x) == 0

    test4 = ((-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2) * N.x
    test4 = test4.simplify()
    assert (test4 & N.x) == -2 * y
test_dyadic.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_dyadic_simplify():
    x, y, z, k, n, m, w, f, s, A = symbols('x, y, z, k, n, m, w, f, s, A')
    N = ReferenceFrame('N')

    dy = N.x | N.x
    test1 = (1 / x + 1 / y) * dy
    assert (N.x & test1 & N.x) != (x + y) / (x * y)
    test1 = test1.simplify()
    assert (N.x & test1 & N.x) == (x + y) / (x * y)

    test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * dy
    test2 = test2.simplify()
    assert (N.x & test2 & N.x) == (A**2 * s**4 / (4 * pi * k * m**3))

    test3 = ((4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)) * dy
    test3 = test3.simplify()
    assert (N.x & test3 & N.x) == 0

    test4 = ((-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2) * dy
    test4 = test4.simplify()
    assert (N.x & test4 & N.x) == -2 * y
test_spherical_harmonics.py 文件源码 项目:zippy 作者: securesystemslab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_Znm():
    # http://en.wikipedia.org/wiki/Solid_harmonics#List_of_lowest_functions
    th, ph = Symbol("theta", real=True), Symbol("phi", real=True)
    from sympy.abc import n,m

    assert Znm(0, 0, th, ph) == Ynm(0, 0, th, ph)
    assert Znm(1, -1, th, ph) == (-sqrt(2)*I*(Ynm(1, 1, th, ph)
                                  - exp(-2*I*ph)*Ynm(1, 1, th, ph))/2)
    assert Znm(1, 0, th, ph) == Ynm(1, 0, th, ph)
    assert Znm(1, 1, th, ph) == (sqrt(2)*(Ynm(1, 1, th, ph)
                                 + exp(-2*I*ph)*Ynm(1, 1, th, ph))/2)
    assert Znm(0, 0, th, ph).expand(func=True) == 1/(2*sqrt(pi))
    assert Znm(1, -1, th, ph).expand(func=True) == (sqrt(3)*I*sqrt(-cos(th)**2 + 1)*exp(I*ph)/(4*sqrt(pi))
                                                    - sqrt(3)*I*sqrt(-cos(th)**2 + 1)*exp(-I*ph)/(4*sqrt(pi)))
    assert Znm(1, 0, th, ph).expand(func=True) == sqrt(3)*cos(th)/(2*sqrt(pi))
    assert Znm(1, 1, th, ph).expand(func=True) == (-sqrt(3)*sqrt(-cos(th)**2 + 1)*exp(I*ph)/(4*sqrt(pi))
                                                   - sqrt(3)*sqrt(-cos(th)**2 + 1)*exp(-I*ph)/(4*sqrt(pi)))
    assert Znm(2, -1, th, ph).expand(func=True) == (sqrt(15)*I*sqrt(-cos(th)**2 + 1)*exp(I*ph)*cos(th)/(4*sqrt(pi))
                                                    - sqrt(15)*I*sqrt(-cos(th)**2 + 1)*exp(-I*ph)*cos(th)/(4*sqrt(pi)))
    assert Znm(2, 0, th, ph).expand(func=True) == 3*sqrt(5)*cos(th)**2/(4*sqrt(pi)) - sqrt(5)/(4*sqrt(pi))
    assert Znm(2, 1, th, ph).expand(func=True) == (-sqrt(15)*sqrt(-cos(th)**2 + 1)*exp(I*ph)*cos(th)/(4*sqrt(pi))
                                                   - sqrt(15)*sqrt(-cos(th)**2 + 1)*exp(-I*ph)*cos(th)/(4*sqrt(pi)))
finite_differences.py 文件源码 项目:pyccel 作者: ratnania 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def compute_stencil(order, n, x_value, h_value, x0=0.):
    """
    computes a stencil of Order order
    """
    h,x = symbols('h x')
    xs = [x+h*cos(i*pi/n) for i in range(n,-1,-1)]
    cs = finite_diff_weights(order, xs, x0)[order][n]
    cs = [simplify(c) for c in cs]

    cs = [simplify(expr.subs(h, h_value)) for expr in cs]
    xs = [simplify(expr.subs(h, h_value)) for expr in xs]

    cs = [simplify(expr.subs(x, x_value)) for expr in cs]
    xs = [simplify(expr.subs(x, x_value)) for expr in xs]

    return xs, cs

##############################################
test_arit.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_Mul_is_rational():
    x = Symbol('x')
    n = Symbol('n', integer=True)
    m = Symbol('m', integer=True, nonzero=True)

    assert (n/m).is_rational is True
    assert (x/pi).is_rational is None
    assert (x/n).is_rational is None
    assert (m/pi).is_rational is False

    r = Symbol('r', rational=True)
    assert (pi*r).is_rational is None

    # issue 8008
    z = Symbol('z', zero=True)
    i = Symbol('i', imaginary=True)
    assert (z*i).is_rational is None
    bi = Symbol('i', imaginary=True, finite=True)
    assert (z*bi).is_zero is True
test_arit.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_issue_8247_8354():
    from sympy import tan
    z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
    assert z.is_positive is False  # it's 0
    z = S('''-2**(1/3)*(3*sqrt(93) + 29)**2 - 4*(3*sqrt(93) + 29)**(4/3) +
        12*sqrt(93)*(3*sqrt(93) + 29)**(1/3) + 116*(3*sqrt(93) + 29)**(1/3) +
        174*2**(1/3)*sqrt(93) + 1678*2**(1/3)''')
    assert z.is_positive is False  # it's 0
    z = 2*(-3*tan(19*pi/90) + sqrt(3))*cos(11*pi/90)*cos(19*pi/90) - \
        sqrt(3)*(-3 + 4*cos(19*pi/90)**2)
    assert z.is_positive is not True  # it's zero and it shouldn't hang
    z = S('''9*(3*sqrt(93) + 29)**(2/3)*((3*sqrt(93) +
        29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**3 +
        72*(3*sqrt(93) + 29)**(2/3)*(81*sqrt(93) + 783) + (162*sqrt(93) +
        1566)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) -
        2) - 2*2**(1/3))**2''')
    assert z.is_positive is False  # it's 0 (and a single _mexpand isn't enough)
test_cartesian.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_p():
    assert Px.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity))
    assert qapply(Px*PxKet(px)) == px*PxKet(px)
    assert PxKet(px).dual_class() == PxBra
    assert PxBra(x).dual_class() == PxKet
    assert (Dagger(PxKet(py))*PxKet(px)).doit() == DiracDelta(px - py)
    assert (XBra(x)*PxKet(px)).doit() == \
        exp(I*x*px/hbar)/sqrt(2*pi*hbar)
    assert represent(PxKet(px)) == DiracDelta(px - px_1)

    rep_x = represent(PxOp(), basis=XOp)
    assert rep_x == -hbar*I*DiracDelta(x_1 - x_2)*DifferentialOperator(x_1)
    assert rep_x == represent(PxOp(), basis=XOp())
    assert rep_x == represent(PxOp(), basis=XKet)
    assert rep_x == represent(PxOp(), basis=XKet())

    assert represent(PxOp()*XKet(), basis=XKet) == \
        -hbar*I*DiracDelta(x - x_2)*DifferentialOperator(x)
    assert represent(XBra("y")*PxOp()*XKet(), basis=XKet) == \
        -hbar*I*DiracDelta(x - y)*DifferentialOperator(x)
test_qft.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_quantum_fourier():
    assert QFT(0, 3).decompose() == \
        SwapGate(0, 2)*HadamardGate(0)*CGate((0,), PhaseGate(1)) * \
        HadamardGate(1)*CGate((0,), TGate(2))*CGate((1,), PhaseGate(2)) * \
        HadamardGate(2)

    assert IQFT(0, 3).decompose() == \
        HadamardGate(2)*CGate((1,), RkGate(2, -2))*CGate((0,), RkGate(2, -3)) * \
        HadamardGate(1)*CGate((0,), RkGate(1, -2))*HadamardGate(0)*SwapGate(0, 2)

    assert represent(QFT(0, 3), nqubits=3) == \
        Matrix([[exp(2*pi*I/8)**(i*j % 8)/sqrt(8) for i in range(8)] for j in range(8)])

    assert QFT(0, 4).decompose()  # non-trivial decomposition
    assert qapply(QFT(0, 3).decompose()*Qubit(0, 0, 0)).expand() == qapply(
        HadamardGate(0)*HadamardGate(1)*HadamardGate(2)*Qubit(0, 0, 0)
    ).expand()
test_clebsch_gordan.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_dot_rota_grad_SH():
    theta, phi = symbols("theta phi")
    assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0) !=  \
        sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi))
    assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0).doit() ==  \
        sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi))
    assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2) !=  \
        0
    assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2).doit() ==  \
        0
    assert dot_rot_grad_Ynm(3, 3, 3, 3, theta, phi).doit() ==  \
        15*sqrt(3003)*Ynm(6, 6, theta, phi)/(143*sqrt(pi))
    assert dot_rot_grad_Ynm(3, 3, 1, 1, theta, phi).doit() ==  \
        sqrt(3)*Ynm(4, 4, theta, phi)/sqrt(pi)
    assert dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit() ==  \
        3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi))
    assert dot_rot_grad_Ynm(3, 2, 3, 2, theta, phi).doit() ==  \
        -sqrt(70)*Ynm(4, 4, theta, phi)/(11*sqrt(pi)) + \
        45*sqrt(182)*Ynm(6, 4, theta, phi)/(143*sqrt(pi))
test_vector.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_vector_simplify():
    x, y, z, k, n, m, w, f, s, A = symbols('x, y, z, k, n, m, w, f, s, A')
    N = ReferenceFrame('N')

    test1 = (1 / x + 1 / y) * N.x
    assert (test1 & N.x) != (x + y) / (x * y)
    test1 = test1.simplify()
    assert (test1 & N.x) == (x + y) / (x * y)

    test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * N.x
    test2 = test2.simplify()
    assert (test2 & N.x) == (A**2 * s**4 / (4 * pi * k * m**3))

    test3 = ((4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)) * N.x
    test3 = test3.simplify()
    assert (test3 & N.x) == 0

    test4 = ((-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2) * N.x
    test4 = test4.simplify()
    assert (test4 & N.x) == -2 * y
test_dyadic.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_dyadic_simplify():
    x, y, z, k, n, m, w, f, s, A = symbols('x, y, z, k, n, m, w, f, s, A')
    N = ReferenceFrame('N')

    dy = N.x | N.x
    test1 = (1 / x + 1 / y) * dy
    assert (N.x & test1 & N.x) != (x + y) / (x * y)
    test1 = test1.simplify()
    assert (N.x & test1 & N.x) == (x + y) / (x * y)

    test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * dy
    test2 = test2.simplify()
    assert (N.x & test2 & N.x) == (A**2 * s**4 / (4 * pi * k * m**3))

    test3 = ((4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)) * dy
    test3 = test3.simplify()
    assert (N.x & test3 & N.x) == 0

    test4 = ((-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2) * dy
    test4 = test4.simplify()
    assert (N.x & test4 & N.x) == -2 * y
test_cyl_innerproducts.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def fcts(self):
        j = sympy.Matrix([
            r**2 * z,
            r * z**2
        ])

        # Create an isotropic sigma vector
        Sig = sympy.Matrix([
            [420/(sympy.pi)*(r*z)**2, 0],
            [0, 420/(sympy.pi)*(r*z)**2],
        ])

        return j, Sig
test_cyl_innerproducts.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def sol(self):
        # Do the inner product! - we are in cyl coordinates!
        j, Sig = self.fcts()
        jTSj = j.T*Sig*j
        # we are integrating in cyl coordinates
        ans  = sympy.integrate(sympy.integrate(sympy.integrate(r * jTSj,
                                                               (r, 0, 1)),
                                               (t, 0, 2*sympy.pi)),
                                (z, 0, 1))[0] # The `[0]` is to make it an int.

        return ans
test_cyl_innerproducts.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def fcts(self):
        j = sympy.Matrix([
            r**2 * z,
            r * z**2
        ])

        # Create an isotropic sigma vector
        Sig = sympy.Matrix([
            [120/(sympy.pi)*(r*z)**2, 0],
            [0, 420/(sympy.pi)*(r*z)**2],
        ])

        return j, Sig
test_cyl_innerproducts.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def fcts(self):
        h = sympy.Matrix([r**2 * z])

        # Create an isotropic sigma vector
        Sig = sympy.Matrix([200/(sympy.pi)*(r*z)**2])

        return h, Sig
test_cyl_innerproducts.py 文件源码 项目:discretize 作者: simpeg 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def sol(self):
        h, Sig = self.fcts()
        # Do the inner product! - we are in cyl coordinates!
        hTSh = h.T*Sig*h
        ans  = sympy.integrate(sympy.integrate(sympy.integrate(r * hTSh,
                                                               (r, 0, 1)),
                                               (t, 0, 2*sympy.pi)),
                                (z, 0, 1))[0] # The `[0]` is to make it an int.
        return ans
stroud1957.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, n, index):
        self.dim = n
        if index == 2:
            self.degree = 2
            r = sqrt(3) / 6
            data = [
                (1.0, numpy.array([numpy.full(n, 2*r)])),
                (+r, _s(n, -1, r)),
                (-r, _s(n, +1, r)),
                ]
        else:
            assert index == 3
            self.degree = 3
            n2 = n // 2 if n % 2 == 0 else (n-1)//2
            i_range = range(1, 2*n+1)
            pts = [[
                [sqrt(fr(2, 3)) * cos((2*k-1)*i*pi / n) for i in i_range],
                [sqrt(fr(2, 3)) * sin((2*k-1)*i*pi / n) for i in i_range],
                ] for k in range(1, n2+1)]
            if n % 2 == 1:
                sqrt3pm = numpy.full(2*n, 1/sqrt(3))
                sqrt3pm[1::2] *= -1
                pts.append(sqrt3pm)
            pts = numpy.vstack(pts).T

            data = [(fr(1, 2*n), pts)]

        self.points, self.weights = untangle(data)
        reference_volume = 2**n
        self.weights *= reference_volume
        return
stroud_secrest.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, key):
        self.degree, data = _gen[key]()
        self.points, self.weights = untangle(data)
        self.weights *= sqrt(pi)**3
        return
stroud_secrest.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, n, index):
        self.dim = n
        if index == 'I':
            self.degree = 2
            data = [
                (fr(1, n+1), sqrt(fr(1, 2)) * _nsimplex(n))
                ]
        elif index == 'II':
            self.degree = 3
            nu = sqrt(fr(n, 2))
            data = [
                (fr(1, 2*n), fsd(n, (nu, 1)))
                ]
        elif index == 'III':
            self.degree = 3
            nu = sqrt(fr(1, 2))
            data = [
                (fr(1, 2**n), pm(n, nu))
                ]
        else:
            assert index == 'IV'
            self.degree = 5

            nu = sqrt(fr(n+2, 2))
            xi = sqrt(fr(n+2, 4))
            A = fr(2, n+2)
            B = fr(4-n, 2 * (n+2)**2)
            C = fr(1, (n+2)**2)

            data = [
                (A, numpy.full((1, n), 0)),
                (B, fsd(n, (nu, 1))),
                (C, fsd(n, (xi, 2))),
                ]

        self.points, self.weights = untangle(data)
        self.weights *= sqrt(pi)**n
        return
dobrodeev1970.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, n):
        self.name = 'Dobrodeev'
        self.degree = 7
        self.dim = n

        A = fr(1, 8)
        B = fr(5-n, 4)
        C = fr((6 - n) * (1 - n**2) + 36, 4*(n + 3))
        D = fr(81, (n + 3) * (n + 6)**2)
        E = fr(45*n**2 + 324*n + 216, n**2 + 12*n + 36) \
            - fr(n * (n**2 - 12*n + 65), 6)

        r = sqrt(fr(3, n+6))
        data = [
            (A, fsd(n, (r, 3))),
            (B, fsd(n, (r, 2))),
            (C, fsd(n, (r, 1))),
            (D, fsd(n, (1, 1))),
            (E, z(n)),
            ]

        self.points, self.weights = untangle(data)

        self.weights /= (
            fr(n, 2) * gamma(fr(n, 2)) / sqrt(pi)**n
            * fr(27 * (n+2) * (n+4), (n+6)**2)
            )
        return
stroud_secrest.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, n, key):
        self.dim = n
        self.degree, data = _gen[key](n)
        self.points, self.weights = untangle(data)
        self.weights *= 2 * sqrt(pi)**n * gamma(n) / gamma(fr(n, 2))
        return
krylov.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, n):
        self.weights = numpy.full(n, 2*sympy.pi/n)
        self.points = numpy.column_stack([
            [sympy.cos(sympy.pi * sympy.Rational(2*k, n)) for k in range(n)],
            [sympy.sin(sympy.pi * sympy.Rational(2*k, n)) for k in range(n)],
            ])
        self.degree = n - 1
        return


问题


面经


文章

微信
公众号

扫码关注公众号