python类cos()的实例源码

two_wheel.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def two_wheel_3d_deriv():
    """ """
    x1, x2, x3, x4, x5, x6, x7 = sympy.symbols("x1,x2,x3,x4,x5,x6,x7")
    dt = sympy.symbols("dt")

    # x1 - x
    # x2 - y
    # x3 - z
    # x4 - theta
    # x5 - v
    # x6 - omega
    # x7 - vz

    # x, y, z, theta, v, omega, vz
    f1 = x1 + x5 * sympy.cos(x4) * dt
    f2 = x2 + x5 * sympy.sin(x4) * dt
    f3 = x3 + x7 * dt
    f4 = x4 + x6 * dt
    f5 = x5
    f6 = x6
    f7 = x7

    F = sympy.Matrix([f1, f2, f3, f4, f5, f6, f7])
    pprint(F.jacobian([x1, x2, x3, x4, x5, x6, x7]))
inverse_depth.py 文件源码 项目:prototype 作者: chutsu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def linearity_index_inverse_depth():
    """Linearity index of Inverse Depth Parameterization"""
    D, rho, rho_0, d_1, sigma_rho = sympy.symbols("D,rho,rho_0,d_1,sigma_rho")
    alpha = sympy.symbols("alpha")
    u = (rho * sympy.sin(alpha)) / (rho_0 * d_1 * (rho_0 - rho) + rho * sympy.cos(alpha))  # NOQA

    # first order derivative of u
    u_p = sympy.diff(u, rho)
    u_p = sympy.simplify(u_p)

    # second order derivative of u
    u_pp = sympy.diff(u_p, rho)
    u_pp = sympy.simplify(u_pp)

    # Linearity index
    L = (u_pp * 2 * sigma_rho) / (u_p)
    L = sympy.simplify(L)

    print()
    print("u: ", u)
    print("u': ", u_p)
    print("u'': ", u_pp)
    # print("L = ", L)
    print("L = ", L.subs(rho, 0))
    print()
finite_differences.py 文件源码 项目:pyccel 作者: ratnania 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def compute_stencil(order, n, x_value, h_value, x0=0.):
    """
    computes a stencil of Order order
    """
    h,x = symbols('h x')
    xs = [x+h*cos(i*pi/n) for i in range(n,-1,-1)]
    cs = finite_diff_weights(order, xs, x0)[order][n]
    cs = [simplify(c) for c in cs]

    cs = [simplify(expr.subs(h, h_value)) for expr in cs]
    xs = [simplify(expr.subs(h, h_value)) for expr in xs]

    cs = [simplify(expr.subs(x, x_value)) for expr in cs]
    xs = [simplify(expr.subs(x, x_value)) for expr in xs]

    return xs, cs

##############################################
test_epathtools.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_epath_apply():
    expr = [((x, 1, t), 2), ((3, y, 4), z)]
    func = lambda expr: expr**2

    assert epath("/*", expr, list) == [[(x, 1, t), 2], [(3, y, 4), z]]

    assert epath("/*/[0]", expr, list) == [([x, 1, t], 2), ([3, y, 4], z)]
    assert epath("/*/[1]", expr, func) == [((x, 1, t), 4), ((3, y, 4), z**2)]
    assert epath("/*/[2]", expr, list) == expr

    assert epath("/*/[0]/int", expr, func) == [((x, 1, t), 2), ((9, y, 16), z)]
    assert epath("/*/[0]/Symbol", expr, func) == [((x**2, 1, t**2), 2),
                 ((3, y**2, 4), z)]
    assert epath(
        "/*/[0]/int[1:]", expr, func) == [((x, 1, t), 2), ((3, y, 16), z)]
    assert epath("/*/[0]/Symbol[1:]", expr, func) == [((x, 1, t**2),
                 2), ((3, y**2, 4), z)]

    assert epath("/Symbol", x + y + z + 1, func) == x**2 + y**2 + z**2 + 1
    assert epath("/*/*/Symbol", t + sin(x + 1) + cos(x + y + E), func) == \
        t + sin(x**2 + 1) + cos(x**2 + y**2 + E)
test_eval.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_pow_eval():
    # XXX Pow does not fully support conversion of negative numbers
    #     to their complex equivalent

    assert sqrt(-1) == I

    assert sqrt(-4) == 2*I
    assert sqrt( 4) == 2
    assert (8)**Rational(1, 3) == 2
    assert (-8)**Rational(1, 3) == 2*((-1)**Rational(1, 3))

    assert sqrt(-2) == I*sqrt(2)
    assert (-1)**Rational(1, 3) != I
    assert (-10)**Rational(1, 3) != I*((10)**Rational(1, 3))
    assert (-2)**Rational(1, 4) != (2)**Rational(1, 4)

    assert 64**Rational(1, 3) == 4
    assert 64**Rational(2, 3) == 16
    assert 24/sqrt(64) == 3
    assert (-27)**Rational(1, 3) == 3*(-1)**Rational(1, 3)

    assert (cos(2) / tan(2))**2 == (cos(2) / tan(2))**2
numbers.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _eval_power(self, expt):
        """
        b is I = sqrt(-1)
        e is symbolic object but not equal to 0, 1

        I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal
        I**0 mod 4 -> 1
        I**1 mod 4 -> I
        I**2 mod 4 -> -1
        I**3 mod 4 -> -I
        """

        if isinstance(expt, Number):
            if isinstance(expt, Integer):
                expt = expt.p % 4
                if expt == 0:
                    return S.One
                if expt == 1:
                    return S.ImaginaryUnit
                if expt == 2:
                    return -S.One
                return -S.ImaginaryUnit
            return (S.NegativeOne)**(expt*S.Half)
        return
test_functions.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_dot_different_frames():
    assert dot(N.x, A.x) == cos(q1)
    assert dot(N.x, A.y) == -sin(q1)
    assert dot(N.x, A.z) == 0
    assert dot(N.y, A.x) == sin(q1)
    assert dot(N.y, A.y) == cos(q1)
    assert dot(N.y, A.z) == 0
    assert dot(N.z, A.x) == 0
    assert dot(N.z, A.y) == 0
    assert dot(N.z, A.z) == 1

    assert dot(N.x, A.x + A.y) == sqrt(2)*cos(q1 + pi/4) == dot(A.x + A.y, N.x)

    assert dot(A.x, C.x) == cos(q3)
    assert dot(A.x, C.y) == 0
    assert dot(A.x, C.z) == sin(q3)
    assert dot(A.y, C.x) == sin(q2)*sin(q3)
    assert dot(A.y, C.y) == cos(q2)
    assert dot(A.y, C.z) == -sin(q2)*cos(q3)
    assert dot(A.z, C.x) == -cos(q2)*sin(q3)
    assert dot(A.z, C.y) == sin(q2)
    assert dot(A.z, C.z) == cos(q2)*cos(q3)
test_functions.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_cross_different_frames():
    assert cross(N.x, A.x) == sin(q1)*A.z
    assert cross(N.x, A.y) == cos(q1)*A.z
    assert cross(N.x, A.z) == -sin(q1)*A.x - cos(q1)*A.y
    assert cross(N.y, A.x) == -cos(q1)*A.z
    assert cross(N.y, A.y) == sin(q1)*A.z
    assert cross(N.y, A.z) == cos(q1)*A.x - sin(q1)*A.y
    assert cross(N.z, A.x) == A.y
    assert cross(N.z, A.y) == -A.x
    assert cross(N.z, A.z) == 0

    assert cross(N.x, A.x) == sin(q1)*A.z
    assert cross(N.x, A.y) == cos(q1)*A.z
    assert cross(N.x, A.x + A.y) == sin(q1)*A.z + cos(q1)*A.z
    assert cross(A.x + A.y, N.x) == -sin(q1)*A.z - cos(q1)*A.z

    assert cross(A.x, C.x) == sin(q3)*C.y
    assert cross(A.x, C.y) == -sin(q3)*C.x + cos(q3)*C.z
    assert cross(A.x, C.z) == -cos(q3)*C.y
    assert cross(C.x, A.x) == -sin(q3)*C.y
    assert cross(C.y, A.x) == sin(q3)*C.x - cos(q3)*C.z
    assert cross(C.z, A.x) == cos(q3)*C.y
test_matrices.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_expand():
    m0 = Matrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]])
    # Test if expand() returns a matrix
    m1 = m0.expand()
    assert m1 == Matrix(
        [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]])

    a = Symbol('a', real=True)

    assert Matrix([exp(I*a)]).expand(complex=True) == \
        Matrix([cos(a) + I*sin(a)])

    assert Matrix([[0, 1, 2], [0, 0, -1], [0, 0, 0]]).exp() == Matrix([
        [1, 1, Rational(3, 2)],
        [0, 1, -1],
        [0, 0, 1]]
    )
test_matrices.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_condition_number():
    x = Symbol('x', real=True)
    A = eye(3)
    A[0, 0] = 10
    A[2, 2] = S(1)/10
    assert A.condition_number() == 100

    A[1, 1] = x
    assert A.condition_number() == Max(10, Abs(x)) / Min(S(1)/10, Abs(x))

    M = Matrix([[cos(x), sin(x)], [-sin(x), cos(x)]])
    Mc = M.condition_number()
    assert all(Float(1.).epsilon_eq(Mc.subs(x, val).evalf()) for val in
        [Rational(1, 5), Rational(1, 2), Rational(1, 10), pi/2, pi, 7*pi/4 ])

    #issue 10782
    assert Matrix([]).condition_number() == 0
test_arrayop.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def test_derivative_by_array():
    from sympy.abc import a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z

    bexpr = x*y**2*exp(z)*log(t)
    sexpr = sin(bexpr)
    cexpr = cos(bexpr)

    a = Array([sexpr])

    assert derive_by_array(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t
    assert derive_by_array(sexpr, [x, y, z]) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr])
    assert derive_by_array(a, [x, y, z]) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]])

    assert derive_by_array(sexpr, [[x, y], [z, t]]) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]])
    assert derive_by_array(a, [[x, y], [z, t]]) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]])
    assert derive_by_array([[x, y], [z, t]], [x, y]) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]])
    assert derive_by_array([[x, y], [z, t]], [[x, y], [z, t]]) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]],
                                                                         [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]])
test_spherical_harmonics.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_Znm():
    # http://en.wikipedia.org/wiki/Solid_harmonics#List_of_lowest_functions
    th, ph = Symbol("theta", real=True), Symbol("phi", real=True)

    assert Znm(0, 0, th, ph) == Ynm(0, 0, th, ph)
    assert Znm(1, -1, th, ph) == (-sqrt(2)*I*(Ynm(1, 1, th, ph)
                                  - exp(-2*I*ph)*Ynm(1, 1, th, ph))/2)
    assert Znm(1, 0, th, ph) == Ynm(1, 0, th, ph)
    assert Znm(1, 1, th, ph) == (sqrt(2)*(Ynm(1, 1, th, ph)
                                 + exp(-2*I*ph)*Ynm(1, 1, th, ph))/2)
    assert Znm(0, 0, th, ph).expand(func=True) == 1/(2*sqrt(pi))
    assert Znm(1, -1, th, ph).expand(func=True) == (sqrt(3)*I*sin(th)*exp(I*ph)/(4*sqrt(pi))
                                                    - sqrt(3)*I*sin(th)*exp(-I*ph)/(4*sqrt(pi)))
    assert Znm(1, 0, th, ph).expand(func=True) == sqrt(3)*cos(th)/(2*sqrt(pi))
    assert Znm(1, 1, th, ph).expand(func=True) == (-sqrt(3)*sin(th)*exp(I*ph)/(4*sqrt(pi))
                                                   - sqrt(3)*sin(th)*exp(-I*ph)/(4*sqrt(pi)))
    assert Znm(2, -1, th, ph).expand(func=True) == (sqrt(15)*I*sin(th)*exp(I*ph)*cos(th)/(4*sqrt(pi))
                                                    - sqrt(15)*I*sin(th)*exp(-I*ph)*cos(th)/(4*sqrt(pi)))
    assert Znm(2, 0, th, ph).expand(func=True) == 3*sqrt(5)*cos(th)**2/(4*sqrt(pi)) - sqrt(5)/(4*sqrt(pi))
    assert Znm(2, 1, th, ph).expand(func=True) == (-sqrt(15)*sin(th)*exp(I*ph)*cos(th)/(4*sqrt(pi))
                                                   - sqrt(15)*sin(th)*exp(-I*ph)*cos(th)/(4*sqrt(pi)))
test_interface.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_function_series2():
    """Create our new "cos" function."""

    class my_function2(Function):

        def fdiff(self, argindex=1):
            return -sin(self.args[0])

        @classmethod
        def eval(cls, arg):
            arg = sympify(arg)
            if arg == 0:
                return sympify(1)

    #Test that the taylor series is correct
    assert my_function2(x).series(x, 0, 10) == cos(x).series(x, 0, 10)
test_piecewise.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_piecewise_fold_piecewise_in_cond():
    p1 = Piecewise((cos(x), x < 0), (0, True))
    p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True))
    p3 = piecewise_fold(p2)
    assert(p2.subs(x, -pi/2) == 0.0)
    assert(p2.subs(x, 1) == 0.0)
    assert(p2.subs(x, -pi/4) == 1.0)
    p4 = Piecewise((0, Eq(p1, 0)), (1,True))
    assert(piecewise_fold(p4) == Piecewise(
        (0, Or(And(Eq(cos(x), 0), x < 0), Not(x < 0))), (1, True)))

    r1 = 1 < Piecewise((1, x < 1), (3, True))
    assert(piecewise_fold(r1) == Not(x < 1))

    p5 = Piecewise((1, x < 0), (3, True))
    p6 = Piecewise((1, x < 1), (3, True))
    p7 = piecewise_fold(Piecewise((1, p5 < p6), (0, True)))
    assert(Piecewise((1, And(Not(x < 1), x < 0)), (0, True)))
hyperbolic.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def as_real_imag(self, deep=True, **hints):
        """
        Returns this function as a complex coordinate.
        """
        from sympy import cos, sin
        if self.args[0].is_real:
            if deep:
                hints['complex'] = False
                return (self.expand(deep, **hints), S.Zero)
            else:
                return (self, S.Zero)
        if deep:
            re, im = self.args[0].expand(deep, **hints).as_real_imag()
        else:
            re, im = self.args[0].as_real_imag()
        return (sinh(re)*cos(im), cosh(re)*sin(im))
transforms.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True):
    """
    Compute a general sine or cosine-type transform
        F(k) = a int_0^oo b*sin(x*k) f(x) dx.
        F(k) = a int_0^oo b*cos(x*k) f(x) dx.

    For suitable choice of a and b, this reduces to the standard sine/cosine
    and inverse sine/cosine transforms.
    """
    F = integrate(a*f*K(b*x*k), (x, 0, oo))

    if not F.has(Integral):
        return _simplify(F, simplify), True

    if not F.is_Piecewise:
        raise IntegralTransformError(name, f, 'could not compute integral')

    F, cond = F.args[0]
    if F.has(Integral):
        raise IntegralTransformError(name, f, 'integral in unexpected form')

    return _simplify(F, simplify), cond
test_integrals.py 文件源码 项目:Python-iBeacon-Scan 作者: NikNitro 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_issue_4892a():
    A, z = symbols('A z')
    c = Symbol('c', nonzero=True)
    P1 = -A*exp(-z)
    P2 = -A/(c*t)*(sin(x)**2 + cos(y)**2)

    h1 = -sin(x)**2 - cos(y)**2
    h2 = -sin(x)**2 + sin(y)**2 - 1

    # there is still some non-deterministic behavior in integrate
    # or trigsimp which permits one of the following
    assert integrate(c*(P2 - P1), t) in [
        c*(-A*(-h1)*log(c*t)/c + A*t*exp(-z)),
        c*(-A*(-h2)*log(c*t)/c + A*t*exp(-z)),
        c*( A* h1 *log(c*t)/c + A*t*exp(-z)),
        c*( A* h2 *log(c*t)/c + A*t*exp(-z)),
        (A*c*t - A*(-h1)*log(t)*exp(z))*exp(-z),
        (A*c*t - A*(-h2)*log(t)*exp(z))*exp(-z),
    ]
stroud1957.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, n, index):
        self.dim = n
        if index == 2:
            self.degree = 2
            r = sqrt(3) / 6
            data = [
                (1.0, numpy.array([numpy.full(n, 2*r)])),
                (+r, _s(n, -1, r)),
                (-r, _s(n, +1, r)),
                ]
        else:
            assert index == 3
            self.degree = 3
            n2 = n // 2 if n % 2 == 0 else (n-1)//2
            i_range = range(1, 2*n+1)
            pts = [[
                [sqrt(fr(2, 3)) * cos((2*k-1)*i*pi / n) for i in i_range],
                [sqrt(fr(2, 3)) * sin((2*k-1)*i*pi / n) for i in i_range],
                ] for k in range(1, n2+1)]
            if n % 2 == 1:
                sqrt3pm = numpy.full(2*n, 1/sqrt(3))
                sqrt3pm[1::2] *= -1
                pts.append(sqrt3pm)
            pts = numpy.vstack(pts).T

            data = [(fr(1, 2*n), pts)]

        self.points, self.weights = untangle(data)
        reference_volume = 2**n
        self.weights *= reference_volume
        return
krylov.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, n):
        self.weights = numpy.full(n, 2*sympy.pi/n)
        self.points = numpy.column_stack([
            [sympy.cos(sympy.pi * sympy.Rational(2*k, n)) for k in range(n)],
            [sympy.sin(sympy.pi * sympy.Rational(2*k, n)) for k in range(n)],
            ])
        self.degree = n - 1
        return
stroud.py 文件源码 项目:quadpy 作者: nschloe 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _gen4_1():
    pts = 2 * sqrt(5) * numpy.array([
        [cos(2*i*pi/5) for i in range(5)],
        [sin(2*i*pi/5) for i in range(5)],
        ]).T
    data = [
        (fr(7, 10), numpy.array([[0, 0]])),
        (fr(3, 50), pts),
        ]
    return 4, data


# The boolean tells whether the factor 2*pi is already in the weights


问题


面经


文章

微信
公众号

扫码关注公众号