python类variance()的实例源码

statistic_functions.py 文件源码 项目:jhTAlib 作者: joosthoeks 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def PVARIANCE(df, n, price='Close', mu=None):
    """
    Population variance of data
    """
    pvariance_list = []
    i = 0
    while i < len(df[price]):
        if i + 1 < n:
            pvariance = float('NaN')
        else:
            start = i + 1 - n
            end = i + 1
            pvariance = statistics.pvariance(df[price][start:end], mu)
        pvariance_list.append(pvariance)
        i += 1
    return pvariance_list
statistic_functions.py 文件源码 项目:jhTAlib 作者: joosthoeks 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def VARIANCE(df, n, price='Close', xbar=None):
    """
    Sample variance of data
    """
    variance_list = []
    i = 0
    while i < len(df[price]):
        if i + 1 < n:
            variance = float('NaN')
        else:
            start = i + 1 - n
            end = i + 1
            variance = statistics.variance(df[price][start:end], xbar)
        variance_list.append(variance)
        i += 1
    return variance_list
main.py 文件源码 项目:CFBPoll 作者: ChangedNameTo 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def math_stats_calculations(point_map):
    point_array = []
    for team in team_array:
        point_array.append(point_map[team])

    # Calculates mean
    mean_val   = str(round(statistics.mean(point_array), 2))
    # Calculates median
    median_val = str(round(statistics.median(point_array), 2))
    # Calculates standard deviation
    stdev_val  = str(round(statistics.stdev(point_array), 2))
    # Calculates variance
    var_val    = str(round(statistics.variance(point_array), 2))

    return (mean_val,median_val,stdev_val,var_val)

# Calls my function
Inertial_Calibration.py 文件源码 项目:PiQuad 作者: jchrismer 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def update(self,new):
        # Preload
        if(self.index < self.N):
            self.window[self.index] = new
            self.index += 1

            # If Window preloaded - start rolling statistics
            if(self.index == self.N):
                self.average = statistics.mean(self.window)
                self.variance = statistics.variance(self.window)
            return

        # Push element into window list and remove the old element
        old = self.window[0]
        self.window.pop(0)
        self.window.append(new)

        oldavg = self.average
        newavg = oldavg + (new - old)/self.N
        self.average = newavg
        if(self.N > 1):
            self.variance += (new-old)*(new-newavg+old-oldavg)/(self.N-1)
Exercises4.py 文件源码 项目:Python-Programming-A-Concise-Introduction 作者: abdullahaalam 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def temp_stat(temps):
    """ prints the average, median, std dev, and variance of temps """
    import statistics
    print(temps)
    print("Mean: ", statistics.mean(temps))
    print("Median: ", statistics.median(temps))

    print("Standard deviation: ", statistics.stdev(temps))
    print("Variance: ", statistics.variance(temps))












#%%
Exercises4.py 文件源码 项目:Python-Programming-A-Concise-Introduction 作者: abdullahaalam 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def temp_stat(temps):
    """ computes the average, median, std dev, and variance of temps """
    import statistics
    print(temps)
    print("Mean: ", statistics.mean(temps))
    print("Median: ", statistics.median(temps))

    print("Standard deviation: ", statistics.stdev(temps))
    print("Variance: ", statistics.variance(temps))
    try:
        print("Mode: ", statistics.mode(temps))
    except statistics.StatisticsError as e:
        print("Mode error: ", e)







#%%
legibilidad.py 文件源码 项目:legibilidad 作者: amunozf 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def mu(text):
    '''
    Muñoz Baquedano and Muñoz Urra's readability score (2006)
    '''
    n = count_words(text)
    # Delete all digits
    text = ''.join(filter(lambda x: not x.isdigit(), text))
    # Cleans it all
    clean = re.compile('\W+')
    text = clean.sub(' ', text).strip()
    text = text.split() # word list
    word_lengths = []
    for word in text:
        word_lengths.append(len(word))
    # The mean calculation needs at least 1 value on the list, and the variance, two. If somebody enters only one word or, what is worse, a figure, the calculation breaks, so this is a 'fix'
    try:
        mean = statistics.mean(word_lengths)
        variance = statistics.variance(word_lengths)
        mu = (n / (n - 1)) * (mean / variance) * 100
        return round(mu, 2)
    except:
        return 0
statistics.py 文件源码 项目:homeassistant 作者: NAStools 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def async_update(self):
        """Get the latest data and updates the states."""
        if not self.is_binary:
            try:
                self.mean = round(statistics.mean(self.states), 2)
                self.median = round(statistics.median(self.states), 2)
                self.stdev = round(statistics.stdev(self.states), 2)
                self.variance = round(statistics.variance(self.states), 2)
            except statistics.StatisticsError as err:
                _LOGGER.warning(err)
                self.mean = self.median = STATE_UNKNOWN
                self.stdev = self.variance = STATE_UNKNOWN
            if self.states:
                self.total = round(sum(self.states), 2)
                self.min = min(self.states)
                self.max = max(self.states)
            else:
                self.min = self.max = self.total = STATE_UNKNOWN
QAAnalysis_dataframe.py 文件源码 项目:QUANTAXIS 作者: yutiansut 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def variance(self):

        return statistics.variance(self.price)
    # ???
Inertial_Calibration.py 文件源码 项目:PiQuad 作者: jchrismer 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, window_size):
        self.N = window_size
        self.window = window_size * [0]
        self.average = 0
        self.variance = 0
        self.stddev = 0
        self.index = 0
Inertial_Calibration.py 文件源码 项目:PiQuad 作者: jchrismer 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def getVar(self):
        if(self.index == 1):
            return 0
        elif(self.index < self.N):
            return statistics.variance(self.window[0:self.index]) # Make return 0?

        return self.variance
abstract_models.py 文件源码 项目:django-decision-matrix 作者: adamcharnock 项目源码 文件源码 阅读 63 收藏 0 点赞 0 评论 0
def get_score_variance(self, *args, **kwargs):
        Score = apps.get_model('ddm_core', 'Score')

        scores = Score.objects.filter(criterion=self, *args, **kwargs).values_list('value', flat=True)
        try:
            return statistics.variance(scores)
        except statistics.StatisticsError:
            return 0
abstract_models.py 文件源码 项目:django-decision-matrix 作者: adamcharnock 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_weight_variance(self, *args, **kwargs):
        Weight = apps.get_model('ddm_core', 'Weight')

        weights = Weight.objects.filter(criterion=self, *args, **kwargs).values_list('value', flat=True)
        try:
            return statistics.variance(weights)
        except statistics.StatisticsError:
            return 0
test_timings.py 文件源码 项目:biweeklybudget 作者: jantman 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def crdb_stats(self, data):
        print('=> class_refresh_db fixture total: %s' % timedelta(
            seconds=sum(data)
        ))
        data = sorted(data)
        print('\tCalled %d times' % len(data))
        mu = statistics.mean(data)
        print('\tMean runtime: %s' % mu)
        print('\tMedian runtime: %s' % statistics.median(data))
        print('\tVariance: %s' % statistics.variance(data))
learn_statistics.py 文件源码 项目:Mac-Python-3.X 作者: L1nwatch 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def main():
    print(stats.mean(range(6)))
    print(stats.median(range(6)))
    print(stats.median_low(range(6)))
    print(stats.median_high(range(6)))
    print(stats.median_grouped(range(6)))
    try:
        print(stats.mode(range(6)))
    except Exception as e:
        print(e)
    print(stats.mode(list(range(6)) + [3]))
    print(stats.pstdev(list(range(6)) + [3]))
    print(stats.stdev(list(range(6)) + [3]))
    print(stats.pvariance(list(range(6)) + [3]))
    print(stats.variance(list(range(6)) + [3]))
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_domain_error_regression(self):
        # Regression test for a domain error exception.
        # (Thanks to Geremy Condra.)
        data = [0.123456789012345]*10000
        # All the items are identical, so variance should be exactly zero.
        # We allow some small round-off error, but not much.
        result = self.func(data)
        self.assertApproxEqual(result, 0.0, tol=5e-17)
        self.assertGreaterEqual(result, 0)  # A negative result must fail.
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_shift_data(self):
        # Test that shifting the data by a constant amount does not affect
        # the variance or stdev. Or at least not much.

        # Due to rounding, this test should be considered an ideal. We allow
        # some tolerance away from "no change at all" by setting tol and/or rel
        # attributes. Subclasses may set tighter or looser error tolerances.
        raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78]
        expected = self.func(raw)
        # Don't set shift too high, the bigger it is, the more rounding error.
        shift = 1e5
        data = [x + shift for x in raw]
        self.assertApproxEqual(self.func(data), expected)
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_iter_list_same(self):
        # Test that iter data and list data give the same result.

        # This is an explicit test that iterators and lists are treated the
        # same; justification for this test over and above the similar test
        # in UnivariateCommonMixin is that an earlier design had variance and
        # friends swap between one- and two-pass algorithms, which would
        # sometimes give different results.
        data = [random.uniform(-3, 8) for _ in range(1000)]
        expected = self.func(data)
        self.assertEqual(self.func(iter(data)), expected)
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_exact_uniform(self):
        # Test the variance against an exact result for uniform data.
        data = list(range(10000))
        random.shuffle(data)
        expected = (10000**2 - 1)/12  # Exact value.
        self.assertEqual(self.func(data), expected)
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_ints(self):
        # Test population variance with int data.
        data = [4, 7, 13, 16]
        exact = 22.5
        self.assertEqual(self.func(data), exact)
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_decimals(self):
        # Test population variance with Decimal data.
        D = Decimal
        data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")]
        exact = D('0.096875')
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Decimal)
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_ints(self):
        # Test sample variance with int data.
        data = [4, 7, 13, 16]
        exact = 30
        self.assertEqual(self.func(data), exact)
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_fractions(self):
        # Test sample variance with Fraction data.
        F = Fraction
        data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
        exact = F(1, 2)
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Fraction)
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_decimals(self):
        # Test sample variance with Decimal data.
        D = Decimal
        data = [D(2), D(2), D(7), D(9)]
        exact = 4*D('9.5')/D(3)
        result = self.func(data)
        self.assertEqual(result, exact)
        self.assertIsInstance(result, Decimal)
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_compare_to_variance(self):
        # Test that stdev is, in fact, the square root of variance.
        data = [random.uniform(-17, 24) for _ in range(1000)]
        expected = math.sqrt(statistics.pvariance(data))
        self.assertEqual(self.func(data), expected)
Exercises4.py 文件源码 项目:Python-Programming-A-Concise-Introduction 作者: abdullahaalam 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def my_stats(slis):
    import statistics
    print("Mean: ", statistics.mean(slis))
    print("Median: ", statistics.median(slis))
#    print("Mode: ", statistics.mode(slis))    
    try:
        print("Mode: ", statistics.mode(slis))
    except statistics.StatisticsError as e:
        print("Mode error: ", e)
    print("Standard Deviation: ", statistics.stdev(slis))
    print("Variance: ", statistics.variance(slis))

#%%
Exercises4.py 文件源码 项目:Python-Programming-A-Concise-Introduction 作者: abdullahaalam 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def temp_stat(temps):
    """ prints the average, median, std dev, and variance of temps """
    pass # replace this pass (a do-nothing) statement with your code
#%%
Exercises4.py 文件源码 项目:Python-Programming-A-Concise-Introduction 作者: abdullahaalam 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def temp_stat(temps):
    """ computes the average, median, std dev, and variance of temps """
    pass # replace this pass (a do-nothing) statement with your code

#%%
test_statistics.py 文件源码 项目:kbe_server 作者: xiaohaoppy 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_domain_error_regression(self):
        # Regression test for a domain error exception.
        # (Thanks to Geremy Condra.)
        data = [0.123456789012345]*10000
        # All the items are identical, so variance should be exactly zero.
        # We allow some small round-off error, but not much.
        result = self.func(data)
        self.assertApproxEqual(result, 0.0, tol=5e-17)
        self.assertGreaterEqual(result, 0)  # A negative result must fail.
test_statistics.py 文件源码 项目:kbe_server 作者: xiaohaoppy 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_shift_data(self):
        # Test that shifting the data by a constant amount does not affect
        # the variance or stdev. Or at least not much.

        # Due to rounding, this test should be considered an ideal. We allow
        # some tolerance away from "no change at all" by setting tol and/or rel
        # attributes. Subclasses may set tighter or looser error tolerances.
        raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78]
        expected = self.func(raw)
        # Don't set shift too high, the bigger it is, the more rounding error.
        shift = 1e5
        data = [x + shift for x in raw]
        self.assertApproxEqual(self.func(data), expected)


问题


面经


文章

微信
公众号

扫码关注公众号