python类mode()的实例源码

statistic_functions.py 文件源码 项目:jhTAlib 作者: joosthoeks 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def MODE(df, n, price='Close'):
    """
    Mode (most common value) of discrete data
    """
    mode_list = []
    i = 0
    while i < len(df[price]):
        if i + 1 < n:
            mode = float('NaN')
        else:
            start = i + 1 - n
            end = i + 1
            mode = statistics.mode(df[price][start:end])
        mode_list.append(mode)
        i += 1
    return mode_list
play.py 文件源码 项目:party-pi 作者: JustinShenk 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def listen_for_end(self, keypress):
        """ Listen for 'q', left, or right keys to end game.

        """
        if keypress != 255:
            print(keypress)
            if keypress == ord('q'):  # 'q' pressed to quit
                print("Escape key entered")
                return "END"
            elif self.curr_level == 0:
                # Select mode
                self.curr_level = 1
                self.tickcount = 0
                if keypress == 81 or keypress == 2:  # left
                    self.easy_mode = True
                elif keypress == 83 or keypress == 3:  # right
                    self.easy_mode = False
            elif self.curr_level == 2:
                print("Resetting")
                self.reset()
Exercises4.py 文件源码 项目:Python-Programming-A-Concise-Introduction 作者: abdullahaalam 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def temp_stat(temps):
    """ computes the average, median, std dev, and variance of temps """
    import statistics
    print(temps)
    print("Mean: ", statistics.mean(temps))
    print("Median: ", statistics.median(temps))

    print("Standard deviation: ", statistics.stdev(temps))
    print("Variance: ", statistics.variance(temps))
    try:
        print("Mode: ", statistics.mode(temps))
    except statistics.StatisticsError as e:
        print("Mode error: ", e)







#%%
iris_statistics.py 文件源码 项目:monty 作者: shoeffner 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test():
    """Tests the statistical functions.

    Raises:
        AssertionError if a test fails.
    """
    testlist0 = [1, 2, 3, 4, 5]
    testlist1 = [1, 2, 3, 4, 5, 6]
    testlist2 = [2, 2, 3, 4, 4, 6]
    testlist3 = [2, 2, 3, 4, 5, 6, 7]

    assert mean(testlist0) - 5 <= 1e-6, mean(testlist0)
    assert mean(testlist1) - 3.5 <= 1e-6, mean(testlist1)
    assert mean(testlist2) - 21 / 6 <= 1e-6, mean(testlist2)
    assert mean(testlist3) - 29 / 7 <= 1e-6, mean(testlist3)

    assert median(testlist0) == 3, median(testlist0)
    assert median(testlist1) - 3.5 <= 1e-6, median(testlist1)
    assert median(testlist2) - 3.5 <= 1e-6, median(testlist2)
    assert median(testlist3) == 4, median(testlist3)

    assert mode(testlist3) == 2, mode(testlist3)
fields.py 文件源码 项目:formpack 作者: kobotoolbox 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_stats(self, metrics, lang=UNSPECIFIED_TRANSLATION, limit=100):

        stats = super(NumField, self).get_stats(metrics, lang, limit)

        stats.update({
            'median': '*',
            'mean': '*',
            'mode': '*',
            'stdev': '*'
        })

        try:
            # require a non empty dataset
            stats['mean'] = statistics.mean(self.flatten_dataset(metrics))
            stats['median'] = statistics.median(self.flatten_dataset(metrics))
            # requires at least 2 values in the dataset
            stats['stdev'] = statistics.stdev(self.flatten_dataset(metrics),
                                              xbar=stats['mean'])
            # requires a non empty dataset and a unique mode
            stats['mode'] = statistics.mode(self.flatten_dataset(metrics))
        except statistics.StatisticsError:
            pass

        return stats
ros.py 文件源码 项目:ROS-Code 作者: Richienb 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def average(numbers, type='mean'):
    import statistics
    type = type.lower()
    try:
        statistics.mean(numbers)
    except:
        raise RuntimeError('An Error Has Occured: List Not Specified (0018)')
    if type == 'mean':
        return statistics.mean(numbers)
    elif type == 'mode':
        return statistics.mode(numbers)
    elif type == 'median':
        return statistics.median(numbers)
    elif type == 'min':
        return min(numbers)
    elif type == 'max':
        return max(numbers)
    elif type == 'range':
        return max(numbers) - min(numbers)
    else:
        raise RuntimeError('An Error Has Occured: You Entered An Invalid Operation (0003)')

# Throw A Runtime Error
QAAnalysis_dataframe.py 文件源码 项目:QUANTAXIS 作者: yutiansut 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def mode(self):
        return statistics.mode(self.price)

    # ???

    # ??
order_book.py 文件源码 项目:trading_package 作者: abrahamchaibi 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_mode_trade_size(self, side: OrderSide, order_type: OrderType, seconds_ago: int,
                            group_by_period: Optional[int] = None) -> Optional[float]:
        order_quantities = self.get_trade_quantities(side, order_type, seconds_ago, group_by_period)
        if len(order_quantities) == 0:
            return None
        try:
            return mode(order_quantities)
        except StatisticsError:
            return None
sentiment_mod.py 文件源码 项目:GDG-IIIT-BHUBANESWAR 作者: shivank01 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def classify(self, features):
        if not self.votes:
            self.get_votes(features)
        return mode(self.votes)
sentiment_mod.py 文件源码 项目:GDG-IIIT-BHUBANESWAR 作者: shivank01 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def confidence(self, features):
        if not self.votes:
            self.get_votes(features)
        choice_votes = self.votes.count(mode(self.votes))
        conf = choice_votes / len(self.votes)
        return conf
picklingScript.py 文件源码 项目:GDG-IIIT-BHUBANESWAR 作者: shivank01 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def classify(self, features):
        votes = []
        for c in self._classifiers:
            v = c.classify(features)
            votes.append(v)
        return mode(votes)
picklingScript.py 文件源码 项目:GDG-IIIT-BHUBANESWAR 作者: shivank01 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def confidence(self, features):
        votes = []
        for c in self._classifiers:
            v = c.classify(features)
            votes.append(v)

        choice_votes = votes.count(mode(votes))
        conf = choice_votes / len(votes)
        return conf
sentiment_mod.py 文件源码 项目:NLP-Sentiment-Analysis-Twitter 作者: aalind0 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def classify(self, features):
        votes = []
        for c in self._classifiers:
            v = c.classify(features)
            votes.append(v)
        return mode(votes)
sentiment_mod.py 文件源码 项目:NLP-Sentiment-Analysis-Twitter 作者: aalind0 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def confidence(self, features):
        votes = []
        for c in self._classifiers:
            v = c.classify(features)
            votes.append(v)

        choice_votes = votes.count(mode(votes))
        conf = choice_votes / len(votes)
        return conf
Train_Classifiers.py 文件源码 项目:NLP-Sentiment-Analysis-Twitter 作者: aalind0 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, *classifiers):
        self._classifiers = classifiers

    #Creating our own classify method.
    #After iterating we return mode(votes), which just returns the most popular vote.
Train_Classifiers.py 文件源码 项目:NLP-Sentiment-Analysis-Twitter 作者: aalind0 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def classify(self, features):
        votes = []
        for c in self._classifiers:
            v = c.classify(features)
            votes.append(v)
        return mode(votes)

    #Defining another parameter, confidence.
    #Since we have algorithms voting, we can tally the votes for and against the winning vote, and call this "confidence.
Train_Classifiers.py 文件源码 项目:NLP-Sentiment-Analysis-Twitter 作者: aalind0 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def confidence(self, features):
        votes = []
        for c in self._classifiers:
            v = c.classify(features)
            votes.append(v)

        choice_votes = votes.count(mode(votes))
        conf = choice_votes / len(votes)
        return conf

# Defining and Accessing the corporas.
# In total, approx 10,000 feeds to be trained and tested on.
analysis.py 文件源码 项目:factable 作者: eliucs 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def classify(self, features):
        votes = []
        for c in self._classifiers:
            v = c.classify(features)
            votes.append(v)

        return mode(votes)
SentMod.py 文件源码 项目:twitter-sentiment 作者: words-sdsc 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def classify(self, features):
        votes = []
        for c in self._classifiers:
            v = c.classify(features)
            votes.append(v)
        return mode(votes)
SentMod.py 文件源码 项目:twitter-sentiment 作者: words-sdsc 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def confidence(self, features):
        votes = []
        for c in self._classifiers:
            v = c.classify(features)
            votes.append(v)

        choice_votes = votes.count(mode(votes))
        conf = choice_votes / len(votes)
        return conf
trainer.py 文件源码 项目:Political-Opinion-Finder 作者: philhabell 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, *classifiers):
        self._classifiers = classifiers

    # this classifies the vote and returns the mode
    # of the result.
    # must be handed:
    #     *featured words
trainer.py 文件源码 项目:Political-Opinion-Finder 作者: philhabell 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def clify(self, features):
        self.votes = []
        for self.i in self._classifiers:
            self.j = self.i.clify(features)
            self.votes.append(self.j)
        return mode(self.votes)

     # find the confidents of results
    # must be handed:
    #     *featured words
trainer.py 文件源码 项目:Political-Opinion-Finder 作者: philhabell 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def conf(self, features):
        self.votes = []
        for self.i in self._classifiers:
            self.j = self.i.clify(features)
            self.votes.append(self.j)

        self.choice_votes = self.votes.count(mode(self.votes))
        self.conf = self.choice_votes / len(self.votes)
        return self.conf

    # find the features of document
    # must be handed:
    #     *document to find feature of
    #     *word features
sentiment.py 文件源码 项目:Political-Opinion-Finder 作者: philhabell 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def __init__(self, *classifiers):
        self._classifiers = classifiers

    # this classifies the vote and returns the mode
    # of the result.
    # must be handed:
    #     *featured words
sentiment.py 文件源码 项目:Political-Opinion-Finder 作者: philhabell 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def classify(self, features):
        self.votes = []
        for self.i in self._classifiers:
            self.j = self.i.classify(features)
            self.votes.append(self.j)
        return mode(self.votes)

    # find the confidents of results
    # must be handed:
    #     *featured words
learn_statistics.py 文件源码 项目:Mac-Python-3.X 作者: L1nwatch 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def main():
    print(stats.mean(range(6)))
    print(stats.median(range(6)))
    print(stats.median_low(range(6)))
    print(stats.median_high(range(6)))
    print(stats.median_grouped(range(6)))
    try:
        print(stats.mode(range(6)))
    except Exception as e:
        print(e)
    print(stats.mode(list(range(6)) + [3]))
    print(stats.pstdev(list(range(6)) + [3]))
    print(stats.stdev(list(range(6)) + [3]))
    print(stats.pvariance(list(range(6)) + [3]))
    print(stats.variance(list(range(6)) + [3]))
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def prepare_data(self):
        """Overload method from UnivariateCommonMixin."""
        # Make sure test data has exactly one mode.
        return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2]
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_nominal_data(self):
        # Test mode with nominal data.
        data = 'abcbdb'
        self.assertEqual(self.func(data), 'b')
        data = 'fe fi fo fum fi fi'.split()
        self.assertEqual(self.func(data), 'fi')
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_discrete_data(self):
        # Test mode with discrete numeric data.
        data = list(range(10))
        for i in range(10):
            d = data + [i]
            random.shuffle(d)
            self.assertEqual(self.func(d), i)
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_bimodal_data(self):
        # Test mode with bimodal data.
        data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9]
        assert data.count(2) == data.count(6) == 4
        # Check for an exception.
        self.assertRaises(statistics.StatisticsError, self.func, data)


问题


面经


文章

微信
公众号

扫码关注公众号