python类stdev()的实例源码

craigslist.py 文件源码 项目:craigslist-rental-market 作者: brbsix 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _print(self):
        """Print statistics and other informational text."""
        mean = statistics.mean(self.prices)
        median = statistics.median(self.prices)
        stdev = statistics.stdev(self.prices)
        high = mean + stdev
        low = mean - stdev

        print(dedent('''\
        Sourced %d prices in %.3f seconds

        Mean:\t$%.2f
        Median:\t$%.2f
        Hi/Lo:\t$%.2f/$%.2f
        StDev:\t%.2f
        ''' % (len(self.prices), self.duration,
               mean, median, high, low, stdev)))
fields.py 文件源码 项目:formpack 作者: kobotoolbox 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_stats(self, metrics, lang=UNSPECIFIED_TRANSLATION, limit=100):

        stats = super(NumField, self).get_stats(metrics, lang, limit)

        stats.update({
            'median': '*',
            'mean': '*',
            'mode': '*',
            'stdev': '*'
        })

        try:
            # require a non empty dataset
            stats['mean'] = statistics.mean(self.flatten_dataset(metrics))
            stats['median'] = statistics.median(self.flatten_dataset(metrics))
            # requires at least 2 values in the dataset
            stats['stdev'] = statistics.stdev(self.flatten_dataset(metrics),
                                              xbar=stats['mean'])
            # requires a non empty dataset and a unique mode
            stats['mode'] = statistics.mode(self.flatten_dataset(metrics))
        except statistics.StatisticsError:
            pass

        return stats
statistics.py 文件源码 项目:homeassistant 作者: NAStools 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def async_update(self):
        """Get the latest data and updates the states."""
        if not self.is_binary:
            try:
                self.mean = round(statistics.mean(self.states), 2)
                self.median = round(statistics.median(self.states), 2)
                self.stdev = round(statistics.stdev(self.states), 2)
                self.variance = round(statistics.variance(self.states), 2)
            except statistics.StatisticsError as err:
                _LOGGER.warning(err)
                self.mean = self.median = STATE_UNKNOWN
                self.stdev = self.variance = STATE_UNKNOWN
            if self.states:
                self.total = round(sum(self.states), 2)
                self.min = min(self.states)
                self.max = max(self.states)
            else:
                self.min = self.max = self.total = STATE_UNKNOWN
stats.py 文件源码 项目:picoCTF 作者: picoCTF 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_average_eligible_score():
    return (statistics.mean([x['score'] for x in get_all_team_scores()]),
            statistics.stdev([x['score'] for x in get_all_team_scores()]))
stats.py 文件源码 项目:picoCTF 作者: picoCTF 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_average_problems_solved(eligible=True, scoring=True):
    teams = api.team.get_all_teams(show_ineligible=(not eligible))
    values = [len(api.problem.get_solved_pids(tid=t['tid'])) for t in teams
              if not scoring or len(api.problem.get_solved_pids(tid=t['tid'])) > 0]
    return statistics.mean(values), statistics.stdev(values)
stats.py 文件源码 项目:picoCTF 作者: picoCTF 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def get_average_achievement_number():
    earned_achievements = api.achievement.get_earned_achievement_instances()
    frequency = defaultdict(int)
    for achievement in earned_achievements:
        frequency[achievement['uid']] += 1
    extra = len(api.team.get_all_teams(show_ineligible=False)) - len(frequency.keys())
    values = [0] * extra
    for val in frequency.values():
        values.append(val)
    return statistics.mean(values), statistics.stdev(values)
QAAnalysis_dataframe.py 文件源码 项目:QUANTAXIS 作者: yutiansut 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def stdev(self):

        return statistics.stdev(self.price)
    # ?????
test_load.py 文件源码 项目:backend.ai-client-py 作者: lablup 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def print_stat(msg, times_taken):
    print('{}: mean {:.2f} secs, median {:.2f} secs, stdev {:.2f}'.format(
        msg, mean(times_taken), median(times_taken), stdev(times_taken)
    ))
stats.py 文件源码 项目:picoCTF 作者: royragsdale 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_average_eligible_score():
    return (statistics.mean([x['score'] for x in get_all_team_scores()]),
            statistics.stdev([x['score'] for x in get_all_team_scores()]))
stats.py 文件源码 项目:picoCTF 作者: royragsdale 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_average_problems_solved(eligible=True, scoring=True):
    teams = api.team.get_all_teams(show_ineligible=(not eligible))
    values = [len(api.problem.get_solved_pids(tid=t['tid'])) for t in teams
              if not scoring or len(api.problem.get_solved_pids(tid=t['tid'])) > 0]
    return statistics.mean(values), statistics.stdev(values)
stats.py 文件源码 项目:picoCTF 作者: royragsdale 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_average_achievement_number():
    earned_achievements = api.achievement.get_earned_achievement_instances()
    frequency = defaultdict(int)
    for achievement in earned_achievements:
        frequency[achievement['uid']] += 1
    extra = len(api.team.get_all_teams(show_ineligible=False)) - len(frequency.keys())
    values = [0] * extra
    for val in frequency.values():
        values.append(val)
    return statistics.mean(values), statistics.stdev(values)
loadLocal.py 文件源码 项目:zatt 作者: simonacca 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def client_pool(func, entries_count, workers, additional_args=[]):
    pool = Pool(workers)
    start_time = timer()
    worker_args = [[entries_count // workers] + additional_args]
    finish_times = pool.starmap(func, worker_args * workers)
    return (statistics.stdev(finish_times),
            statistics.mean(finish_times) - start_time)
voteCounter.py 文件源码 项目:MiniTWOW-Tools 作者: hanss314 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def parse_args():
    global should_draw
    parser = argparse.ArgumentParser()
    parser.add_argument('input')
    parser.add_argument("-e", "--perc_elim", nargs='?', type=int, const=-1, default=20, help='Percentage of contestants eliminated, set to negative number to specify number of contestants')
    parser.add_argument("-t", "--num_gold", nargs='?', type=int, const=5, default=1, help='Number of contestants to place in gold highlighting')
    parser.add_argument('-i', '--omit_image', action='store_false', help='Use this flag to not draw image')
    args = parser.parse_args()
    path = args.input

    votes = convert(path)
    prompt = open('./twows/{}/prompt.txt'.format(path),'r').read().split('\n')[0]
    scores = []
    twowers=set()

    with open('./twows/{}/responses.csv'.format(path),'r',encoding=encoding) as csvfile:#read responses
        reader = csv.reader(csvfile)
        for row in reader:
            #scoredata format [twower, response, votes/mean, count, boost, final, stdev, votegraph]
            name = simplify(row[0])
            twowers.add(name)
            try:
                scores.append([name,row[1],[],0,int(row[2]),0,0,0,[0 for i in range(10)],[]])
            except:
                scores.append([name,row[1],[],0,0,0,0,0,[0 for i in range(10)],[]])

    twowers = list(twowers)
    twower_count = len(twowers)
    should_draw=args.omit_image
    top_number = args.num_gold #chart coloring ranges
    elim_number=0

    if int(args.perc_elim) < 0:
        elim_number = -args.perc_elim
    else:
        elim_number = round(args.perc_elim*len(twowers)/100)

    return (path, prompt, scores, votes, twowers, twower_count, top_number, elim_number)
stats.py 文件源码 项目:xgovctf 作者: alphagov 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_average_eligible_score():
    return (statistics.mean([x['score'] for x in get_all_team_scores()]),
            statistics.stdev([x['score'] for x in get_all_team_scores()]))
stats.py 文件源码 项目:xgovctf 作者: alphagov 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_average_problems_solved(eligible=True, scoring=True):
    teams = api.team.get_all_teams(show_ineligible=(not eligible))
    values = [len(api.problem.get_solved_pids(tid=t['tid'])) for t in teams
              if not scoring or len(api.problem.get_solved_pids(tid=t['tid'])) > 0]
    return statistics.mean(values), statistics.stdev(values)
stats.py 文件源码 项目:xgovctf 作者: alphagov 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_average_achievement_number():
    earned_achievements = api.achievement.get_earned_achievement_instances()
    frequency = defaultdict(int)
    for achievement in earned_achievements:
        frequency[achievement['uid']] += 1
    extra = len(api.team.get_all_teams(show_ineligible=False)) - len(frequency.keys())
    values = [0] * extra
    for val in frequency.values():
        values.append(val)
    return statistics.mean(values), statistics.stdev(values)
scores.py 文件源码 项目:xenoGI 作者: ecbush 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def getAabrhRawScoreSummmaryD(strainNamesL,aabrhL,scoresO,geneNames):
    '''Given raw scores and a directory with blast output, finds the sets of all around best reciprocal hits. Then for each pair of species, calculates the mean and standard deviation of scores and stores in a dictionary.'''

    # now loop through these, sorting scores into a dict keyed by species pair.

    # create dictionary, (representing an upper triangular matrix)
    spScoreD={}
    for i in range(len(strainNamesL)-1):
        strain1 = strainNamesL[i]
        for j in range(i+1,len(strainNamesL)):
            strain2 = strainNamesL[j]
            spScoreD[(strain1,strain2)]=[]

    # loop through aabrhL and populate
    for orthoT in aabrhL:
        spScoreD = addPairwiseScores(spScoreD,orthoT,scoresO,geneNames)

    # get mean and standard deviation
    summaryD = {}
    for sp1,sp2 in spScoreD:
        mean = statistics.mean(spScoreD[(sp1,sp2)])
        std = statistics.stdev(spScoreD[(sp1,sp2)])
        summaryD[(sp1,sp2)] = (mean,std)
        summaryD[(sp2,sp1)] = (mean,std)

    return summaryD
voteCounter.py 文件源码 项目:TWOWBot 作者: Noahkiq 项目源码 文件源码 阅读 85 收藏 0 点赞 0 评论 0
def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('input')
    parser.add_argument("-e", "--perc_elim", nargs='?', const=5, default=5)
    parser.add_argument("-t", "--num_gold", nargs='?', const=5, default=5)
    args = parser.parse_args()
    path = args.input

    votes = convert(path)
    prompt = open('./twows/{}/prompt.txt'.format(path),'r').read().split('\n')[0]
    scores = []
    twowers=set()

    with open('./twows/{}/responses.csv'.format(path),'r') as csvfile:#read responses
        reader = csv.reader(csvfile)
        for row in reader:
            #scoredata format [twower, response, votes/mean, count, boost, final, stdev, votegraph]
            name = simplify(row[0])
            twowers.add(name)
            try:
                scores.append([name,row[1],[],0,int(row[2]),0,0,0,[0 for i in range(10)]])
            except:
                scores.append([name,row[1],[],0,0,0,0,0,[0 for i in range(10)]])

    twowers = list(twowers)
    twower_count = len(twowers)

    top_number = int(args.num_gold) #chart coloring ranges
    elim_number=0

    if int(args.perc_elim) < 0:
        elim_number = -int(args.perc_elim)
    else:
        elim_number = round(int(args.perc_elim)*len(twowers)/100)

    return (path, prompt, scores, votes, twowers, twower_count, top_number, elim_number)
profiling.py 文件源码 项目:claimchain-core 作者: gdanezis 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def compute_stats(self):
        result = {}
        for func_name, data_points in self.data.items():
            result[self._prefix + func_name] = {
                'avg': stats.mean(data_points),
                'min': min(data_points),
                'max': max(data_points),
                'num': len(data_points)
            }
            if len(data_points) >= 2:
                result[func_name]['std'] = stats.stdev(data_points)

        return result
evaluator.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def eval_performance(env, agent, n_runs, max_episode_len=None,
                     explorer=None, logger=None):
    """Run multiple evaluation episodes and return statistics.

    Args:
        env (Environment): Environment used for evaluation
        agent (Agent): Agent to evaluate.
        n_runs (int): Number of evaluation runs.
        max_episode_len (int or None): If specified, episodes longer than this
            value will be truncated.
        explorer (Explorer): If specified, the given Explorer will be used for
            selecting actions.
        logger (Logger or None): If specified, the given Logger object will be
            used for logging results. If not specified, the default logger of
            this module will be used.
    Returns:
        Dict of statistics.
    """
    scores = run_evaluation_episodes(
        env, agent, n_runs,
        max_episode_len=max_episode_len,
        explorer=explorer,
        logger=logger)
    stats = dict(
        mean=statistics.mean(scores),
        median=statistics.median(scores),
        stdev=statistics.stdev(scores) if n_runs >= 2 else 0.0,
        max=np.max(scores),
        min=np.min(scores))
    return stats


问题


面经


文章

微信
公众号

扫码关注公众号