python类median()的实例源码

stats.py 文件源码 项目:picoCTF 作者: picoCTF 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_median_problems_solved_per_user(eligible=True, scoring=True, user_breakdown=None):
    if user_breakdown is None:
        user_breakdown = get_team_member_solve_stats(eligible)
    solves = []
    for tid, breakdown in user_breakdown.items():
        for uid, ubreakdown in breakdown.items():
            if ubreakdown is None:
                solved = 0
            else:
                if 'correct' in ubreakdown:
                    solved = ubreakdown['correct']
                else:
                    solved = 0
            if solved > 0 or not scoring:
                solves += [solved]
    return statistics.median(solves)
statistic_functions.py 文件源码 项目:jhTAlib 作者: joosthoeks 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def MEDIAN(df, n, price='Close'):
    """
    Median (middle value) of data
    """
    median_list = []
    i = 0
    while i < len(df[price]):
        if i + 1 < n:
            median = float('NaN')
        else:
            start = i + 1 - n
            end = i + 1
            median = statistics.median(df[price][start:end])
        median_list.append(median)
        i += 1
    return median_list
statistic_functions.py 文件源码 项目:jhTAlib 作者: joosthoeks 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def MEDIAN_LOW(df, n, price='Close'):
    """
    Low median of data
    """
    median_low_list = []
    i = 0
    while i < len(df[price]):
        if i + 1 < n:
            median_low = float('NaN')
        else:
            start = i + 1 - n
            end = i + 1
            median_low = statistics.median_low(df[price][start:end])
        median_low_list.append(median_low)
        i += 1
    return median_low_list
statistic_functions.py 文件源码 项目:jhTAlib 作者: joosthoeks 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def MEDIAN_HIGH(df, n, price='Close'):
    """
    High median of data
    """
    median_high_list = []
    i = 0
    while i < len(df[price]):
        if i + 1 < n:
            median_high = float('NaN')
        else:
            start = i + 1 - n
            end = i + 1
            median_high = statistics.median_high(df[price][start:end])
        median_high_list.append(median_high)
        i += 1
    return median_high_list
stats.py 文件源码 项目:picoCTF 作者: royragsdale 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_median_problems_solved_per_user(eligible=True, scoring=True, user_breakdown=None):
    if user_breakdown is None:
        user_breakdown = get_team_member_solve_stats(eligible)
    solves = []
    for tid, breakdown in user_breakdown.items():
        for uid, ubreakdown in breakdown.items():
            if ubreakdown is None:
                solved = 0
            else:
                if 'correct' in ubreakdown:
                    solved = ubreakdown['correct']
                else:
                    solved = 0
            if solved > 0 or not scoring:
                solves += [solved]
    return statistics.median(solves)
stats.py 文件源码 项目:xgovctf 作者: alphagov 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_median_problems_solved_per_user(eligible=True, scoring=True, user_breakdown=None):
    if user_breakdown is None:
        user_breakdown = get_team_member_solve_stats(eligible)
    solves = []
    for tid, breakdown in user_breakdown.items():
        for uid, ubreakdown in breakdown.items():
            if ubreakdown is None:
                solved = 0
            else:
                if 'correct' in ubreakdown:
                    solved = ubreakdown['correct']
                else:
                    solved = 0
            if solved > 0 or not scoring:
                solves += [solved]
    return statistics.median(solves)
measureSynWinSize.py 文件源码 项目:xenoGI 作者: ecbush 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def printWinSizeSummary(neighborTL):
    '''Given a list where index is genes and the values are neighbor genes, calculate the size of this window in bp for each gene. Return the mean and standard deviation.'''

    winL = []
    for neighborT in neighborTL:
        winL.append(calcWinSize(neighborT,geneNames,geneInfoD))

    median = statistics.median(winL)
    mean = statistics.mean(winL)
    stdev = statistics.stdev(winL)

    print("  median",round(median))
    print("  mean",round(mean))
    print("  stdev",round(stdev))

## mods for core stuff (requires changing functions, so we move them here)
evaluator.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def evaluate_and_update_max_score(self, t, episodes):
        eval_stats = eval_performance(
            self.env, self.agent, self.n_runs,
            max_episode_len=self.max_episode_len, explorer=self.explorer,
            logger=self.logger)
        elapsed = time.time() - self.start_time
        custom_values = tuple(tup[1] for tup in self.agent.get_statistics())
        mean = eval_stats['mean']
        values = (t,
                  episodes,
                  elapsed,
                  mean,
                  eval_stats['median'],
                  eval_stats['stdev'],
                  eval_stats['max'],
                  eval_stats['min']) + custom_values
        record_stats(self.outdir, values)
        if mean > self.max_score:
            update_best_model(self.agent, self.outdir, t, self.max_score, mean,
                              logger=self.logger)
            self.max_score = mean
        return mean
evaluator.py 文件源码 项目:chainerrl 作者: chainer 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def evaluate_and_update_max_score(self, t, episodes, env, agent):
        eval_stats = eval_performance(
            env, agent, self.n_runs,
            max_episode_len=self.max_episode_len, explorer=self.explorer,
            logger=self.logger)
        elapsed = time.time() - self.start_time
        custom_values = tuple(tup[1] for tup in agent.get_statistics())
        mean = eval_stats['mean']
        values = (t,
                  episodes,
                  elapsed,
                  mean,
                  eval_stats['median'],
                  eval_stats['stdev'],
                  eval_stats['max'],
                  eval_stats['min']) + custom_values
        record_stats(self.outdir, values)
        with self._max_score.get_lock():
            if mean > self._max_score.value:
                update_best_model(
                    agent, self.outdir, t, self._max_score.value, mean,
                    logger=self.logger)
                self._max_score.value = mean
        return mean
PerfTest.py 文件源码 项目:sdos-core 作者: sdos 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def runPutTest(testDataPath, testDataRangeStart, testDataRangeEnd, f):
    log.debug('running put tests...')
    timeStart = time.perf_counter()
    times = [time.perf_counter()]
    for i in range(testDataRangeStart, testDataRangeEnd):
        print(i)
        thisPath = '%s/%i' % (testDataPath, i)
        o = loadTestData(thisPath)

        f.putObject(o, str(i))

        times.append(time.perf_counter())

    timeEnd = time.perf_counter()
    log.warning('RESULT (PUT): total test runtime: %s seconds, mean per object: %s' % (
        timeEnd - timeStart, ((timeEnd - timeStart) / testDataRangeEnd)))
    log.critical('RESULT (PUT): median result: %s ' % statistics.median(calculateTimeDeltas(times)))
    log.critical('RESULT (PUT): standard deviation result: %s ' % statistics.stdev(calculateTimeDeltas(times)))
    log.critical('RESULT (PUT): mean result: %s ' % statistics.mean(calculateTimeDeltas(times)))


# log.critical('RESULT (PUT): individual times: %s ' % (calculateTimeDeltas(times)))
PerfTest.py 文件源码 项目:sdos-core 作者: sdos 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def runGetTest(testDataPath, testDataRangeStart, testDataRangeEnd, f):
    log.debug('running get tests...')
    timeStart = time.perf_counter()
    times = [time.perf_counter()]
    for i in range(testDataRangeStart, testDataRangeEnd):
        thisPath = '%s/%i' % (testDataPath, i)

        o = f.getObject(str(i))
        saveTestData(o, thisPath)

        times.append(time.perf_counter())

    timeEnd = time.perf_counter()
    log.critical('RESULT (GET): total test runtime: %s seconds, mean per object: %s' % (
        timeEnd - timeStart, ((timeEnd - timeStart) / testDataRangeEnd)))
    log.critical('RESULT (GET): median result: %s ' % statistics.median(calculateTimeDeltas(times)))
    log.critical('RESULT (GET): standard deviation result: %s ' % statistics.stdev(calculateTimeDeltas(times)))
    log.critical('RESULT (GET): mean result: %s ' % statistics.mean(calculateTimeDeltas(times)))


# log.critical('RESULT (GET): individual times: %s ' % (calculateTimeDeltas(times)))
PerfTest.py 文件源码 项目:sdos-core 作者: sdos 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def runDeleteTest(testDataRangeStart, testDataRangeEnd, f):
    log.debug('running delete tests...')
    timeStart = time.perf_counter()
    times = [time.perf_counter()]
    for i in range(testDataRangeStart, testDataRangeEnd):
        f.deleteObject(str(i))

        times.append(time.perf_counter())

    timeEnd = time.perf_counter()
    log.critical('RESULT (DELETE): total test runtime: %s seconds, mean per object: %s' % (
        timeEnd - timeStart, ((timeEnd - timeStart) / testDataRangeEnd)))
    log.critical('RESULT (DELETE): median result: %s ' % statistics.median(calculateTimeDeltas(times)))
    log.critical('RESULT (DELETE): standard deviation result: %s ' % statistics.stdev(calculateTimeDeltas(times)))
    log.critical('RESULT (DELETE): mean result: %s ' % statistics.mean(calculateTimeDeltas(times)))


# log.critical('RESULT (DELETE): individual times: %s ' % (calculateTimeDeltas(times)))



###############################################################################
###############################################################################
a3c_ale.py 文件源码 项目:async-rl 作者: muupan 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def eval_performance(rom, p_func, n_runs):
    assert n_runs > 1, 'Computing stdev requires at least two runs'
    scores = []
    for i in range(n_runs):
        env = ale.ALE(rom, treat_life_lost_as_terminal=False)
        test_r = 0
        while not env.is_terminal:
            s = chainer.Variable(np.expand_dims(dqn_phi(env.state), 0))
            pout = p_func(s)
            a = pout.action_indices[0]
            test_r += env.receive_action(a)
        scores.append(test_r)
        print('test_{}:'.format(i), test_r)
    mean = statistics.mean(scores)
    median = statistics.median(scores)
    stdev = statistics.stdev(scores)
    return mean, median, stdev
run_a3c.py 文件源码 项目:async-rl 作者: muupan 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def eval_performance(process_idx, make_env, model, phi, n_runs):
    assert n_runs > 1, 'Computing stdev requires at least two runs'
    scores = []
    for i in range(n_runs):
        model.reset_state()
        env = make_env(process_idx, test=True)
        obs = env.reset()
        done = False
        test_r = 0
        while not done:
            s = chainer.Variable(np.expand_dims(phi(obs), 0))
            pout, _ = model.pi_and_v(s)
            a = pout.action_indices[0]
            obs, r, done, info = env.step(a)
            test_r += r
        scores.append(test_r)
        print('test_{}:'.format(i), test_r)
    mean = statistics.mean(scores)
    median = statistics.median(scores)
    stdev = statistics.stdev(scores)
    return mean, median, stdev
main.py 文件源码 项目:CFBPoll 作者: ChangedNameTo 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def math_stats_calculations(point_map):
    point_array = []
    for team in team_array:
        point_array.append(point_map[team])

    # Calculates mean
    mean_val   = str(round(statistics.mean(point_array), 2))
    # Calculates median
    median_val = str(round(statistics.median(point_array), 2))
    # Calculates standard deviation
    stdev_val  = str(round(statistics.stdev(point_array), 2))
    # Calculates variance
    var_val    = str(round(statistics.variance(point_array), 2))

    return (mean_val,median_val,stdev_val,var_val)

# Calls my function
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_odd_number_repeated(self):
        # Test median.grouped with repeated median values.
        data = [12, 13, 14, 14, 14, 15, 15]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 14)
        #---
        data = [12, 13, 14, 14, 14, 14, 15]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 13.875)
        #---
        data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data, 5), 19.375)
        #---
        data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28]
        assert len(data)%2 == 1
        self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8)
test_statistics.py 文件源码 项目:ouroboros 作者: pybee 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_even_number_repeated(self):
        # Test median.grouped with repeated median values.
        data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30]
        assert len(data)%2 == 0
        self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8)
        #---
        data = [2, 3, 4, 4, 4, 5]
        assert len(data)%2 == 0
        self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8)
        #---
        data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4.5)
        #---
        data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4.75)
Exercises4.py 文件源码 项目:Python-Programming-A-Concise-Introduction 作者: abdullahaalam 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def temp_stat(temps):
    """ prints the average, median, std dev, and variance of temps """
    import statistics
    print(temps)
    print("Mean: ", statistics.mean(temps))
    print("Median: ", statistics.median(temps))

    print("Standard deviation: ", statistics.stdev(temps))
    print("Variance: ", statistics.variance(temps))












#%%
Exercises4.py 文件源码 项目:Python-Programming-A-Concise-Introduction 作者: abdullahaalam 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def temp_stat(temps):
    """ computes the average, median, std dev, and variance of temps """
    import statistics
    print(temps)
    print("Mean: ", statistics.mean(temps))
    print("Median: ", statistics.median(temps))

    print("Standard deviation: ", statistics.stdev(temps))
    print("Variance: ", statistics.variance(temps))
    try:
        print("Mode: ", statistics.mode(temps))
    except statistics.StatisticsError as e:
        print("Mode error: ", e)







#%%
test_statistics.py 文件源码 项目:kbe_server 作者: xiaohaoppy 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_odd_number_repeated(self):
        # Test median.grouped with repeated median values.
        data = [12, 13, 14, 14, 14, 15, 15]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 14)
        #---
        data = [12, 13, 14, 14, 14, 14, 15]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data), 13.875)
        #---
        data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30]
        assert len(data)%2 == 1
        self.assertEqual(self.func(data, 5), 19.375)
        #---
        data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28]
        assert len(data)%2 == 1
        self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8)
test_statistics.py 文件源码 项目:kbe_server 作者: xiaohaoppy 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_even_number_repeated(self):
        # Test median.grouped with repeated median values.
        data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30]
        assert len(data)%2 == 0
        self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8)
        #---
        data = [2, 3, 4, 4, 4, 5]
        assert len(data)%2 == 0
        self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8)
        #---
        data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4.5)
        #---
        data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
        assert len(data)%2 == 0
        self.assertEqual(self.func(data), 4.75)
iris_statistics.py 文件源码 项目:monty 作者: shoeffner 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test():
    """Tests the statistical functions.

    Raises:
        AssertionError if a test fails.
    """
    testlist0 = [1, 2, 3, 4, 5]
    testlist1 = [1, 2, 3, 4, 5, 6]
    testlist2 = [2, 2, 3, 4, 4, 6]
    testlist3 = [2, 2, 3, 4, 5, 6, 7]

    assert mean(testlist0) - 5 <= 1e-6, mean(testlist0)
    assert mean(testlist1) - 3.5 <= 1e-6, mean(testlist1)
    assert mean(testlist2) - 21 / 6 <= 1e-6, mean(testlist2)
    assert mean(testlist3) - 29 / 7 <= 1e-6, mean(testlist3)

    assert median(testlist0) == 3, median(testlist0)
    assert median(testlist1) - 3.5 <= 1e-6, median(testlist1)
    assert median(testlist2) - 3.5 <= 1e-6, median(testlist2)
    assert median(testlist3) == 4, median(testlist3)

    assert mode(testlist3) == 2, mode(testlist3)
autosense_v1.py 文件源码 项目:CerebralCortex-2.0-legacy 作者: MD2Korg 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def gsr_response(stream_id: uuid, start_time: datetime, end_time: datetime, label_attachment: str, label_off: str,
                 CC_obj: CerebralCortex, config: dict) -> str:
    """
    This method analyzes Galvanic skin response to label a window as improper attachment or sensor-off-body
    :param stream_id: UUID
    :param start_time:
    :param end_time:
    :param label_attachment:
    :param label_off:
    :param CC_obj:
    :param config:
    :return: string
    """
    datapoints = CC_obj.get_datastream(stream_id, start_time=start_time, end_time=end_time, data_type=DataSet.COMPLETE)

    vals = []
    for dp in datapoints:
        vals.append(dp.sample)

    if stat.median(stat.array(vals)) < config["attachment_marker"]["improper_attachment"]:
        return label_attachment
    elif stat.median(stat.array(vals)) > config["attachment_marker"]["gsr_off_body"]:
        return label_off
util.py 文件源码 项目:CerebralCortex-2.0-legacy 作者: MD2Korg 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def outlier_detection(window_data: list) -> list:
    """
    removes outliers from a list
    This algorithm is modified version of Chauvenet's_criterion (https://en.wikipedia.org/wiki/Chauvenet's_criterion)
    :param window_data:
    :return:
    """
    if not window_data:
        raise ValueError("List is empty.")

    vals = []
    for dp in window_data:
        vals.append(float(dp.sample))

    median = stat.median(vals)
    standard_deviation = stat.stdev(vals)
    normal_values = list()

    for val in window_data:
        if (abs(float(val.sample)) - median) < standard_deviation:
            normal_values.append(float(val.sample))

    return normal_values
ghstats.py 文件源码 项目:foss-heartbeat 作者: sagesharp 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def graphRampTime(deltas, nocontribs, graphtitle, xtitle, filename):
    data = [Histogram(x=deltas)]
    layout = Layout(
        title=graphtitle,
        yaxis=dict(title='Number of contributors'),
        xaxis=dict(title= xtitle +
                   '<br>Mean: ' + '{:.2f}'.format(statistics.mean(deltas)) + ' days, ' +
                   'Median: ' + '{:.2f}'.format(statistics.median(deltas)) + ' days' +
                   '<br>Number of contributors who did this: ' +
                   '{:,g}'.format(len(deltas)) +
                   '<br>Percentage of contributors who did this: ' +
                   '{:.2f}'.format(len(deltas)/(len(deltas)+len(nocontribs))*100) + '%')
    )
    fig = Figure(data=data, layout=layout)
    return offline.plot(fig, show_link=False, include_plotlyjs=False, output_type='div')

# FIXME Maybe look for the word 'bot' in the user description?
SendRecvDialogController.py 文件源码 项目:urh 作者: jopohl 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def sync_gain_sliders(self):
        conf = self.get_config_for_selected_device()
        prefix = self.rx_tx_prefix

        if prefix + "rf_gain" in conf:
            key = prefix + "rf_gain"
            gain = conf[key][int(median(range(len(conf[key]))))]
            self.ui.spinBoxGain.setValue(gain)
            self.ui.spinBoxGain.valueChanged.emit(gain)
        if prefix + "if_gain" in conf:
            key = prefix + "if_gain"
            if_gain = conf[key][int(median(range(len(conf[key]))))]
            self.ui.spinBoxIFGain.setValue(if_gain)
            self.ui.spinBoxIFGain.valueChanged.emit(if_gain)
        if prefix + "baseband_gain" in conf:
            key = prefix + "baseband_gain"
            baseband_gain = conf[key][int(median(range(len(conf[key]))))]
            self.ui.spinBoxBasebandGain.setValue(baseband_gain)
            self.ui.spinBoxBasebandGain.valueChanged.emit(baseband_gain)
pilot.py 文件源码 项目:a3c 作者: hercky 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def eval_performance(rom, p_func, n_runs):
    assert n_runs > 1, 'Computing stdev requires at least two runs'
    scores = []
    for i in range(n_runs):
        env = ale.ALE(rom, treat_life_lost_as_terminal=False)
        test_r = 0
        while not env.is_terminal:
            s = util.dqn_phi(env.state)
            pout = p_func(s)
            a = util.categorical_sample(pout)
            test_r += env.receive_action(a)
        scores.append(test_r)
        print 'test_',i,':',test_r
    mean = statistics.mean(scores)
    median = statistics.median(scores)
    stdev = statistics.stdev(scores)
    return mean, median, stdev
craigslist.py 文件源码 项目:craigslist-rental-market 作者: brbsix 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def _print(self):
        """Print statistics and other informational text."""
        mean = statistics.mean(self.prices)
        median = statistics.median(self.prices)
        stdev = statistics.stdev(self.prices)
        high = mean + stdev
        low = mean - stdev

        print(dedent('''\
        Sourced %d prices in %.3f seconds

        Mean:\t$%.2f
        Median:\t$%.2f
        Hi/Lo:\t$%.2f/$%.2f
        StDev:\t%.2f
        ''' % (len(self.prices), self.duration,
               mean, median, high, low, stdev)))
fields.py 文件源码 项目:formpack 作者: kobotoolbox 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_stats(self, metrics, lang=UNSPECIFIED_TRANSLATION, limit=100):

        stats = super(NumField, self).get_stats(metrics, lang, limit)

        stats.update({
            'median': '*',
            'mean': '*',
            'mode': '*',
            'stdev': '*'
        })

        try:
            # require a non empty dataset
            stats['mean'] = statistics.mean(self.flatten_dataset(metrics))
            stats['median'] = statistics.median(self.flatten_dataset(metrics))
            # requires at least 2 values in the dataset
            stats['stdev'] = statistics.stdev(self.flatten_dataset(metrics),
                                              xbar=stats['mean'])
            # requires a non empty dataset and a unique mode
            stats['mode'] = statistics.mode(self.flatten_dataset(metrics))
        except statistics.StatisticsError:
            pass

        return stats
iterGrass.py 文件源码 项目:GRASS 作者: COMBINE-lab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def getMedWeight(graph, node1, node2):
    weights = []
    for (x, weight) in graph[node1]:
        if weight != 1.1:
            weights.append(weight)
        else:
            weights.append(1)
    for (x, weight) in graph[node2]:
        if weight != 1.1:
            weights.append(weight)
        else:
            weights.append(1)

    if not weights:
        return(0)
    else:
        return(statistics.median(weights))


问题


面经


文章

微信
公众号

扫码关注公众号