python类LinearSVC()的实例源码

train_svms.py 文件源码 项目:Faster_RCNN_Training_Toolkit 作者: VerseChow 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:KITTI-detection-OHEM 作者: manutdzou 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
scikit_classifier.py 文件源码 项目:QuestionAnswerNLP 作者: debjyoti385 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def train(labeled_featuresets, C=1e5):
        """
        :param labeled_featuresets: A list of classified featuresets,
            i.e., a list of tuples ``(featureset, label)``.
        """
        feat = [featureset for featureset, label in labeled_featuresets]
        feature_vectorizer = MVectorizer.DictsVectorizer()
        X = feature_vectorizer.fit_transform(feat)
        X = Normalizer().fit_transform(X)
        label_set = set( [label for featureset, label in labeled_featuresets] )
        label_vectorizer = dict( [(label,num) for num,label in enumerate(label_set)] )
        y = numpy.array([label_vectorizer[label] for featureset, label in labeled_featuresets])
        # print "Training on %d examples with %d features..."%(X.shape[0],X.shape[1]),
        classifier = OneVsRestClassifier(LinearSVC(loss='squared_hinge', penalty='l2', dual=True, tol=1e-5, C=C))
        classifier.fit(X,y)
        # print "done"

        return scikit_classifier(feature_vectorizer,label_vectorizer,classifier)
train_svms.py 文件源码 项目:rcnn-with-tflearn 作者: Redoblue 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def train_svms():
    if not os.path.isfile('models/fine_tune.model.index'):
        print('models/fine_tune.model doesn\'t exist.')
        return

    net = create_alexnet()
    model = tflearn.DNN(net)
    model.load('models/fine_tune.model')

    train_file_dir = 'svm_train/'
    flist = os.listdir(train_file_dir)
    svms = []
    for train_file in flist:
        if "pkl" in train_file:
            continue
        X, Y = generate_single_svm_train_data(train_file_dir + train_file)
        train_features = []
        for i in X:
            feats = model.predict([i])
            train_features.append(feats[0])
        print("feature dimension of fitting: {}".format(np.shape(train_features)))
        clf = svm.LinearSVC()
        clf.fit(train_features, Y)
        svms.append(clf)
    joblib.dump(svms, 'models/train_svm.model')
article_learner.py 文件源码 项目:fake_news 作者: bmassman 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def article_trainers(articles: ArticleDB):
    """
    Run repeated models against article db to predict validity score for
    articles.
    """
    models = [(DecisionTreeClassifier, {}),
              (RandomForestClassifier, {}),
              (LogisticRegression, {'C': [0.01, 0.1, 1, 10, 100]}),
              (MultinomialNB, {'alpha': [0.1, 1.0, 10.0, 100.0]}),
              (LinearSVC, {'C': [0.01, 0.1, 1, 10, 100]})]
    trained_models = []
    for classifier, param_grid in models:
        res = train_model(articles, classifier, param_grid, probabilities=True)
        trained_models.append((str(res), res))
    ensemble_learner = VotingClassifier(estimators=trained_models[:4],
                                        voting='soft')
    train_model(articles, ensemble_learner, {})
train_svms.py 文件源码 项目:ohem 作者: abhi2610 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:py-faster-rcnn-dockerface 作者: natanielruiz 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
test_rocauc.py 文件源码 项目:yellowbrick 作者: DistrictDataLabs 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_decision_function_rocauc(self):
        """
        Test ROCAUC with classifiers that have a decision function
        """
        # Load the model and assert there is no predict_proba method.
        model = LinearSVC()
        with self.assertRaises(AttributeError):
            model.predict_proba

        # Fit model and visualizer
        visualizer = ROCAUC(model)
        visualizer.fit(X, yb)

        expected = np.asarray([
            0.204348,  0.228593,  0.219908, -0.211756, -0.26155 , -0.221405
        ])

        # Get the predict_proba scores and evaluate
        y_scores = visualizer._get_y_scores(X)
        npt.assert_array_almost_equal(y_scores, expected, decimal=1)
main_ml.py 文件源码 项目:svm 作者: fzn0728 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def tune_para(dataframe, i):
    # To apply an classifier on this data, we need to flatten the image, to
    # turn the data in a (samples, feature) matrix:
    columns = ['SMA_10','Momentum','stoch_K','WMA_10','MACD','A/D','Volume']
    X = dataframe[columns].as_matrix()
    y = dataframe['Adj Close'].as_matrix()
    X_train = X[i-200:i]
    y_train = y[i-200:i]
    X_test = X[i:i+1]
    y_test = y[i:i+1]

    ### Train four kinds of SVM model
    C = 1  # SVM regularization parameter
    svc = svm.SVC(cache_size = 1000, kernel='linear', C=C).fit(X_train, y_train)
    rbf_svc = svm.SVC(cache_size = 1000, kernel='rbf', gamma=0.7, C=C).fit(X_train, y_train)
    poly_svc = svm.SVC(cache_size = 1000, kernel='poly', degree=3, C=C).fit(X_train, y_train)
    lin_svc = svm.LinearSVC(loss='squared_hinge', penalty='l1', dual=False, C=C).fit(X_train, y_train)
    Y_result = y_test


    ### Make the prediction
    for i, clf in enumerate((svc, lin_svc, rbf_svc, poly_svc)):
        pred = clf.predict(X_test)
        Y_result = np.vstack((Y_result, np.array(pred))) # append prediction on Y_result
    return Y_result.T
new_data_mlp.py 文件源码 项目:NVDM-For-Document-Classification 作者: cryanzpj 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def SVMbanchmark(X_train, y_train, X_test, y_test):
    # optimial c is 10.0, f1 = 0.52
    print("Training LinearSVC with l1-based feature selection")
    X_valid, y_valid = X_test[:10000], y_test[:10000]
    score_list = []
    CList = [0.1, 0.5, 1, 10, 50, 100]
    for c in CList:
        clf = OneVsRestClassifier(LinearSVC(C=c, penalty='l1', dual=False))
        clf.fit(X_train, y_train)

        pred = clf.predict(X_valid)
        score = metrics.f1_score(y_valid, pred, average="macro")
        score_list.append(score)
        print("f1-score: {:f}, c is {:f}".format(score, c))
    clf = OneVsRestClassifier(LinearSVC(penality="l1", dual=False, C=CList[np.argmax(score_list)]))
    clf.fit(X_train, y_train)
    pred = clf.predict(X_test)
    score = metrics.f1_score(y_test, pred, average="micro")
    print("f1-score for test set: {:f}".format(score))
vae_imdb.py 文件源码 项目:NVDM-For-Document-Classification 作者: cryanzpj 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def SVMbanchmark(X_train, X_test, y_train, y_test):
    # optimial c is 10.0, f1 = 0.52
    print("Training LinearSVC with l1-based feature selection")
    import pdb
    pdb.set_trace()
    X_valid, y_valid = X_test[:10000], y_test[:10000]
    score_list = []
    CList = [0.1, 0.5, 1, 10, 50, 100]
    for c in CList:
        clf = LinearSVC(C=c, penalty='l1', dual=False)
        clf.fit(X_train, y_train)
        pred = clf.predict(X_valid)
        score = metrics.accuracy_score(y_valid, pred)
        score_list.append(score)
        print("f1-score: {:f}, c is {:f}".format(score, c))
    clf = LinearSVC(penality="l1", dual=False, C=CList[np.argmax(score_list)])
    clf.fit(X_train, y_train)
    pred = clf.predict(X_test)
    print("f1-score for test set: {:f}".format(score))
train_svms.py 文件源码 项目:PVANet-FACE 作者: twmht 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
graphssl.py 文件源码 项目:graph-based-semi-supervised-learning 作者: deerishi 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def compareWithSvm(self,datasetTrain,datasetTest):
        C=[0.000001,0.00001,0.0001,0.001,0.01,0.1,1,10,100,1000]
        print '\n'
        print 'dataset shape is ',datasetTrain.shape
        self.y_train=self.y_train.reshape(-1,)
        for c in C:
            self.Svm=svm.LinearSVC(C=c)
            self.Svm.fit(datasetTrain,self.y_train)
            labels=self.Svm.predict(datasetTest)
            print 'accuracy with c=',c,'  is  ',self.checkAccuracy(labels,self.y_test),'% ','\n'   











#for graph based reasoning , replace every 0 with -1
trainingandtesting.py 文件源码 项目:SBB4-damage-tracker 作者: whorn 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def trainClassifier(foldername,classifierName):
    model = cv2.ml.KNearest_create()
    features = []
    labels = []
    os.chdir(foldername)
    for filename in glob.iglob('*.png'):
        features.append(cv2.imread((filename),-1))
        labels.append(filename[0])
    list_hog_fd = []
    for feature in features:
        fd = hog(feature.reshape((27, 35)), orientations=9, pixels_per_cell=(9, 7), cells_per_block=(1, 1), visualise=False)
        list_hog_fd.append(fd)
    hog_features = np.array(list_hog_fd, 'float64')
    os.chdir("..")
    clf = LinearSVC()
    clf.fit(hog_features, labels)
    joblib.dump(clf,classifierName, compress=3)
    os.chdir("..")
train_svms.py 文件源码 项目:CAPTCHA_Identifier 作者: AlphaLFC 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:SubCNN 作者: tanshen 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
11.6 feature_selection_bagging.py 文件源码 项目:ML-note 作者: JasonK93 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_RFECV():
    '''
    test the method of RFECV
    :return:  None
    '''
    iris=load_iris()
    X=iris.data
    y=iris.target
    estimator=LinearSVC()
    selector=RFECV(estimator=estimator,cv=3)
    selector.fit(X,y)
    print("N_features %s"%selector.n_features_)
    print("Support is %s"%selector.support_)
    print("Ranking %s"%selector.ranking_)
    print("Grid Scores %s"%selector.grid_scores_)
k_fold_predictor.py 文件源码 项目:movie-quality-profitability-predictor 作者: wbowditch 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def compute_cross_fold(data):
     data_table = pd.read_csv("total_set.csv",index_col=0)

     #data_norm = (data - data.mean()) / (data.sum())
     scaler = preprocessing.StandardScaler().fit(data)
     data_scaled = scaler.transform(data)
     #print data_scaled
     profitability_target = data_table['Profitable']
     #print profitability_target
     #gross_target = data_table['Domestic Gross']
     #tomato = data_table['Rotten']


     #normalized_target_gross = (gross_target - gross_target.mean()) / (gross_target.max() - gross_target.min())
     #tomato = (tomato - tomato.mean()) / (tomato.max() - tomato.min())


     #clf_profit = svm.SVC(kernel='rbf',C=0.8, gamma=5,verbose=True)
     clf_profit = svm.LinearSVC(C=0.001,verbose=True,tol=.1)
     clf_profit.fit(data_scaled,profitability_target)
     scores = cross_val_score(clf_profit, data_scaled, profitability_target, cv=10)

     #print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
     return (scores.mean(), scores.std() * 2)
LinearSVC_model.py 文件源码 项目:ScoreCardModel 作者: data-science-tools 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def _train(self, X_matrix, y, **kwargs):
        """????

        Parameters:

            X_matrix (numpy.array): - ????????????
            y (numpy.array): - ???????????

        Returns:

            sklearn.model: - sklearn???


        """
        from sklearn.svm import LinearSVC
        model = LinearSVC(**kwargs)
        model.fit(X_matrix, y)
        return model
test_forest.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def test_random_hasher():
    # test random forest hashing on circles dataset
    # make sure that it is linearly separable.
    # even after projected to two SVD dimensions
    # Note: Not all random_states produce perfect results.
    hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
    X, y = datasets.make_circles(factor=0.5)
    X_transformed = hasher.fit_transform(X)

    # test fit and transform:
    hasher = RandomTreesEmbedding(n_estimators=30, random_state=1)
    assert_array_equal(hasher.fit(X).transform(X).toarray(),
                       X_transformed.toarray())

    # one leaf active per data point per forest
    assert_equal(X_transformed.shape[0], X.shape[0])
    assert_array_equal(X_transformed.sum(axis=1), hasher.n_estimators)
    svd = TruncatedSVD(n_components=2)
    X_reduced = svd.fit_transform(X_transformed)
    linear_clf = LinearSVC()
    linear_clf.fit(X_reduced, y)
    assert_equal(linear_clf.score(X_reduced, y), 1.)


问题


面经


文章

微信
公众号

扫码关注公众号