python类LinearSVC()的实例源码

recognition_utils.py 文件源码 项目:pybot 作者: spillai 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, filename, target_map, classifier='svm'): 

        self.seed_ = 0
        self.filename_ = filename
        self.target_map_ = target_map
        self.target_ids_ = (np.unique(target_map.keys())).astype(np.int32)
        self.epoch_no_ = 0
        self.st_time_ = time.time()

        # Setup classifier
        print('-------------------------------')        
        print('====> Building Classifier, setting class weights') 
        if classifier == 'svm': 
            self.clf_hyparams_ = {'C':[0.01, 0.1, 1.0, 10.0, 100.0], 'class_weight': ['balanced']}
            self.clf_base_ = LinearSVC(random_state=self.seed_)
        elif classifier == 'sgd': 
            self.clf_hyparams_ = {'alpha':[0.0001, 0.001, 0.01, 0.1, 1.0, 10.0], 'class_weight':['auto']} # 'loss':['hinge'], 
            self.clf_ = SGDClassifier(loss='log', penalty='l2', shuffle=False, random_state=self.seed_, 
                                      warm_start=True, n_jobs=-1, n_iter=1, verbose=4)
        else: 
            raise Exception('Unknown classifier type %s. Choose from [sgd, svm, gradient-boosting, extra-trees]' 
                            % classifier)
train_svms.py 文件源码 项目:adversarial-frcnn 作者: xiaolonw 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
figure.classification.vs.regression.py 文件源码 项目:microbiome-summer-school-2017 作者: aldro61 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def make_classification_example(axis, random_state):
    X, y = make_blobs(n_samples=100, n_features=2, centers=2, cluster_std=2.7, random_state=random_state)

    axis.scatter(X[y == 0, 0], X[y == 0, 1], color="red", s=10, label="Disease")
    axis.scatter(X[y == 1, 0], X[y == 1, 1], color="blue", s=10, label="Healthy")

    clf = LinearSVC().fit(X, y)

    # get the separating hyperplane
    w = clf.coef_[0]
    a = -w[0] / w[1]
    xx = np.linspace(-5, 7)
    yy = a * xx - (clf.intercept_[0]) / w[1]

    # plot the line, the points, and the nearest vectors to the plane
    axis.plot(xx, yy, 'k-', color="black", label="Model")

    ax1.tick_params(labelbottom='off', labelleft='off')
    ax1.set_xlabel("Gene 1")
    ax1.set_ylabel("Gene 2")
    ax1.legend()
models.py 文件源码 项目:johnson-county-ddj-public 作者: dssg 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def define_model(self, model, parameters, n_cores = 0):
        clfs = {'RandomForestClassifier': RandomForestClassifier(n_estimators=50, n_jobs=7),
                'ExtraTreesClassifier': ExtraTreesClassifier(n_estimators=10, n_jobs=7, criterion='entropy'),
                'AdaBoostClassifier': AdaBoostClassifier(DecisionTreeClassifier(max_depth=1), algorithm="SAMME", n_estimators=200),
                'LogisticRegression': LogisticRegression(penalty='l1', C=1e5),
                'svm.SVC': svm.SVC(kernel='linear', probability=True, random_state=0),
                'GradientBoostingClassifier': GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=10),
                'GaussianNB': GaussianNB(),
                'DecisionTreeClassifier': DecisionTreeClassifier(),
                'SGDClassifier': SGDClassifier(loss="hinge", penalty="l2", n_jobs=7),
                'KNeighborsClassifier': KNeighborsClassifier(n_neighbors=3), 
                'linear.SVC': svm.LinearSVC() }

        if model not in clfs:
            raise ConfigError("Unsupported model {}".format(model))

        clf = clfs[model]
        clf.set_params(**parameters)
        return clf
p-final.py 文件源码 项目:Stock-Market-Prediction 作者: Diptiranjan1 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def do_ml(ticker):
    X, y, df = extract_featuresets(ticker)

    X_train, X_test, y_train, y_test = cross_validation.train_test_split(X,
                                                        y,
                                                        test_size=0.25)

    #clf = neighbors.KNeighborsClassifier()

    clf = VotingClassifier([('lsvc',svm.LinearSVC()),
                            ('knn',neighbors.KNeighborsClassifier()),
                            ('rfor',RandomForestClassifier())])


    clf.fit(X_train, y_train)
    confidence = clf.score(X_test, y_test)
    print('accuracy:',confidence)
    predictions = clf.predict(X_test)
    print('predicted class counts:',Counter(predictions))
    print()
    print()
    return confidence

# examples of running:
train_svms.py 文件源码 项目:fast-rcnn-distillation 作者: xiaolonw 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:faster-rcnn-resnet 作者: Eniac-Xie 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:py-faster-rcnn-tk1 作者: joeking11829 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
_LinearSVC.py 文件源码 项目:coremltools 作者: gsabran 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def convert(model, feature_names, target):
    """Convert a LinearSVC model to the protobuf spec.
    Parameters
    ----------
    model: LinearSVC
        A trained LinearSVC model.

    feature_names: [str]
        Name of the input columns.

    target: str
        Name of the output column.

    Returns
    -------
    model_spec: An object of type Model_pb.
        Protobuf representation of the model
    """
    if not(_HAS_SKLEARN):
        raise RuntimeError('scikit-learn not found. scikit-learn conversion API is disabled.')

    _sklearn_util.check_expected_type(model, _LinearSVC)
    _sklearn_util.check_fitted(model, lambda m: hasattr(m, 'coef_'))

    return _MLModel(_logistic_regression._convert(model, feature_names, target))
train_svms.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
wangbase.py 文件源码 项目:DiscourseSenser 作者: WladimirSidorenko 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, a_clf=None, a_grid_search=False):
        """Class constructor.

        Initialize classifier.

        Args:
          a_clf (classifier or None):
            classifier to use or None for default
          a_grid_search (bool): use grid search for estimating hyper-parameters

        """
        classifier = a_clf or LinearSVC(C=DFLT_C,
                                        **DFLT_PARAMS)
        self._gs = a_grid_search
        self._model = Pipeline([("vect", DictVectorizer()),
                                ("clf", classifier)])
train_svms.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
ClassificationSVM.py 文件源码 项目:AirTicketPredicting 作者: junlulocky 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, isTrain, isOutlierRemoval=0):
        """
        The linear models ``LinearSVC()`` and ``SVC(kernel='linear')`` yield slightly
        different decision boundaries. This can be a consequence of the following
        differences:
        - ``LinearSVC`` minimizes the squared hinge loss while ``SVC`` minimizes the
          regular hinge loss.

        - ``LinearSVC`` uses the One-vs-All (also known as One-vs-Rest) multiclass
          reduction while ``SVC`` uses the One-vs-One multiclass reduction.
        :return:
        """
        super(ClassificationSVM, self).__init__(isTrain, isOutlierRemoval)

        # data preprocessing
        self.dataPreprocessing()
        self.clf = svm.SVC() # define the SVM classifier

        C = 1.0  # SVM regularization parameter
        self.svc = svm.SVC(kernel='linear', C=C, max_iter=100000)
        self.rbf_svc = svm.SVC(kernel='rbf', gamma=0.7, C=C)
        self.poly_svc = svm.SVC(kernel='poly', coef0=1, degree=3, C=C)
        self.lin_svc = svm.LinearSVC(C=C)
SentiCR.py 文件源码 项目:SentiCR 作者: senticr 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_classifier(self):
        algo=self.algo

        if algo=="GBT":
            return GradientBoostingClassifier()
        elif algo=="RF":
            return  RandomForestClassifier()
        elif algo=="ADB":
            return AdaBoostClassifier()
        elif algo =="DT":
            return  DecisionTreeClassifier()
        elif algo=="NB":
            return  BernoulliNB()
        elif algo=="SGD":
            return  SGDClassifier()
        elif algo=="SVC":
            return LinearSVC()
        elif algo=="MLPC":
            return MLPClassifier(activation='logistic',  batch_size='auto',
            early_stopping=True, hidden_layer_sizes=(100,), learning_rate='adaptive',
            learning_rate_init=0.1, max_iter=5000, random_state=1,
            solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
            warm_start=False)
        return 0
test_model_selection_sklearn.py 文件源码 项目:dask-searchcv 作者: dask 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_classes__property():
    # Test that classes_ property matches best_estimator_.classes_
    X = np.arange(100).reshape(10, 10)
    y = np.array([0] * 5 + [1] * 5)
    Cs = [.1, 1, 10]

    grid_search = dcv.GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
    grid_search.fit(X, y)
    assert_array_equal(grid_search.best_estimator_.classes_,
                       grid_search.classes_)

    # Test that regressors do not have a classes_ attribute
    grid_search = dcv.GridSearchCV(Ridge(), {'alpha': [1.0, 2.0]})
    grid_search.fit(X, y)
    assert not hasattr(grid_search, 'classes_')

    # Test that the grid searcher has no classes_ attribute before it's fit
    grid_search = dcv.GridSearchCV(LinearSVC(random_state=0), {'C': Cs})
    assert not hasattr(grid_search, 'classes_')

    # Test that the grid searcher has no classes_ attribute without a refit
    grid_search = dcv.GridSearchCV(LinearSVC(random_state=0),
                                   {'C': Cs}, refit=False)
    grid_search.fit(X, y)
    assert not hasattr(grid_search, 'classes_')
test_model_selection_sklearn.py 文件源码 项目:dask-searchcv 作者: dask 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_grid_search_sparse():
    # Test that grid search works with both dense and sparse matrices
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    clf = LinearSVC()
    cv = dcv.GridSearchCV(clf, {'C': [0.1, 1.0]})
    cv.fit(X_[:180], y_[:180])
    y_pred = cv.predict(X_[180:])
    C = cv.best_estimator_.C

    X_ = sp.csr_matrix(X_)
    clf = LinearSVC()
    cv = dcv.GridSearchCV(clf, {'C': [0.1, 1.0]})
    cv.fit(X_[:180].tocoo(), y_[:180])
    y_pred2 = cv.predict(X_[180:])
    C2 = cv.best_estimator_.C

    assert np.mean(y_pred == y_pred2) >= .9
    assert C == C2
pumil.py 文件源码 项目:pumil 作者: levelfour 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def train_pumil_clf(bags, pidx, uidx, w, NL, learning_phase = False):
  # top-{NL} reliable negative bags
  relnidx = reliable_negative_bag_idx(bags, uidx, w, NL)
  Bn = [bags[j] for j in relnidx]
  # estimated p(X|Y=-1) via WKDE
  Dn = weighted_kde(Bn, w[relnidx])
  # form Positive Margin Pool (PMP)
  pmp_x, pmp_y, pmp_conf = form_pmp(bags, w, pidx, relnidx, Dn)
  # train SVM by using PMP instances
  pmp_weighted_x = np.multiply(pmp_x.T, pmp_conf).T
  clf = svm.LinearSVC(loss = 'hinge')
  clf.fit(pmp_weighted_x, pmp_y)
  clf_ = pumil_clf_wrapper(lambda x: float(clf.decision_function(x)), Dn, learning_phase)

  if learning_phase:
    return clf_, relnidx

  else:
    return clf_
train_svms.py 文件源码 项目:TattDL 作者: z-harry-sun 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
train_svms.py 文件源码 项目:CRAFT 作者: byangderek 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
_LinearSVC.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def convert(model, feature_names, target):
    """Convert a LinearSVC model to the protobuf spec.
    Parameters
    ----------
    model: LinearSVC
        A trained LinearSVC model.

    feature_names: [str]
        Name of the input columns.

    target: str
        Name of the output column.

    Returns
    -------
    model_spec: An object of type Model_pb.
        Protobuf representation of the model
    """
    if not(_HAS_SKLEARN):
        raise RuntimeError('scikit-learn not found. scikit-learn conversion API is disabled.')

    _sklearn_util.check_expected_type(model, _LinearSVC)
    _sklearn_util.check_fitted(model, lambda m: hasattr(m, 'coef_'))

    return _MLModel(_logistic_regression._convert(model, feature_names, target))
test_glm_classifier.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _conversion_and_evaluation_helper_for_linear_svc(self, class_labels):
        ARGS = [ {},
                 {'C' : .75, 'loss': 'hinge'},
                 {'penalty': 'l1', 'dual': False},
                 {'tol': 0.001, 'fit_intercept': False},
                 {'intercept_scaling': 1.5}
        ]

        x, y = GlmCassifierTest._generate_random_data(class_labels)
        column_names = ['x1', 'x2']
        df = pd.DataFrame(x, columns=column_names)

        for cur_args in ARGS:
            print(class_labels, cur_args)
            cur_model = LinearSVC(**cur_args)
            cur_model.fit(x, y)

            spec = convert(cur_model, input_features=column_names,
                           output_feature_names='target')

            df['prediction'] = cur_model.predict(x)

            cur_eval_metics = evaluate_classifier(spec, df, verbose=False)
            self.assertEquals(cur_eval_metics['num_errors'], 0)
main.py 文件源码 项目:semihin 作者: HKUST-KnowComp 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def svm_experiment(scope_name, X, y):
    for lp in lp_cand:
        results = []
        for r in range(50):
            with open('data/local/split/' + scope_name + '/lb' + str(lp).zfill(3) + '_' + str(r).zfill(
                    3) + '_train') as f:
                trainLabel = pk.load(f)
            with open('data/local/split/' + scope_name + '/lb' + str(lp).zfill(3) + '_' + str(r).zfill(
                    3) + '_test') as f:
                testLabel = pk.load(f)

            XTrain = X[trainLabel.keys()]
            XTest = X[testLabel.keys()]
            yTrain = y[trainLabel.keys()]
            yTest = y[testLabel.keys()]

            # train
            clf = LinearSVC(C=0.01)
            clf.fit(XTrain, yTrain)

            # test
            pred = clf.predict(XTest)
            results.append(sum(pred == yTest) / float(yTest.shape[0]))
        return np.mean(results)
nbsvm.py 文件源码 项目:document_classification 作者: scotthlee 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def fit(self, x, y):
        # Convert non-binary features to binary
        bin_x = tfidf_to_counts(x)

        # Calculating the log-count ratio
        X_pos = bin_x[np.where(y == 1)]
        X_neg = bin_x[np.where(y == 0)]
        self.r = log_count_ratio(X_pos, X_neg)
        X = np.multiply(self.r, bin_x)

        # Training linear SVM with NB features but no interpolation
        svm = LinearSVC(C=self.C)
        svm.fit(X, y)
        self.coef_ = svm.coef_
        self.int_coef_ = interpolate(self.coef_, self.beta)
        self.bias = svm.intercept_

    # Scores the interpolated model
model.py 文件源码 项目:wende 作者: h404bi 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def init_model():
        # “????”??
        f_trunk = QuestionTrunkVectorizer(tokenizer=tokenize)

        # Word2Vec ????
        f_word2vec = Question2VecVectorizer(tokenizer=tokenize)

        # ???? (400 ?)
        union_features = FeatureUnion([
            ('f_trunk_lsa', Pipeline([
                ('trunk', f_trunk),
                # ??_????: ?????? (LSA)
                ('lsa', TruncatedSVD(n_components=200, n_iter=10))
            ])),
            ('f_word2vec', f_word2vec),
        ])

        model = Pipeline([('union', union_features), ('clf', LinearSVC(C=0.02))])
        return model
train_svms.py 文件源码 项目:faster_rcnn_logo 作者: romyny 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, cls, dim, feature_scale=1.0,
                 C=0.001, B=10.0, pos_weight=2.0):
        self.pos = np.zeros((0, dim), dtype=np.float32)
        self.neg = np.zeros((0, dim), dtype=np.float32)
        self.B = B
        self.C = C
        self.cls = cls
        self.pos_weight = pos_weight
        self.dim = dim
        self.feature_scale = feature_scale
        self.svm = svm.LinearSVC(C=C, class_weight={1: 2, -1: 1},
                                 intercept_scaling=B, verbose=1,
                                 penalty='l2', loss='l1',
                                 random_state=cfg.RNG_SEED, dual=True)
        self.pos_cur = 0
        self.num_neg_added = 0
        self.retrain_limit = 2000
        self.evict_thresh = -1.1
        self.loss_history = []
RBFTrainer.py 文件源码 项目:Steal-ML 作者: ftramer 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def grid_retrain_in_f(self, n_dim=500):
        rbf_map = RBFSampler(n_dim, random_state=1)
        fourier_approx_svm = pipeline.Pipeline([("mapper", rbf_map),
                                                ("svm", LinearSVC())])

        # C_range = np.logspace(-5, 15, 21, base=2)
        # gamma_range = np.logspace(-15, 3, 19, base=2)
        # param_grid = dict(mapper__gamma=gamma_range, svm__C=C_range)
        # cv = StratifiedShuffleSplit(Y, n_iter=5, test_size=0.2, random_state=42)
        # grid = GridSearchCV(fourier_approx_svm, param_grid=param_grid, cv=cv)
        # grid.fit(X, Y)
        #
        # rbf_svc2 = grid.best_estimator_

        rbf_svc2 = fourier_approx_svm
        rbf_svc2.fit(self.X_ex, self.y_ex)

        self.set_clf2(rbf_svc2)
        return self.benchmark()


问题


面经


文章

微信
公众号

扫码关注公众号