python类RobustScaler()的实例源码

model.py 文件源码 项目:DriverPower 作者: smshuai 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def scale_data(X, scaler=None):
    """ Scale X with robust scaling.

    Args:
        X (np.array): feature matrix indexed by binID.
        scaler (RobustScaler): pre-trained scaler. Default is None

    Returns:
        np.array: normalized feature matrix.
        RobustScaler: robust scaler fitted with training data,
            only returned when there is no pre-trained scaler.

    """
    if scaler is not None:
        return scaler.transform(X)
    else:
        scaler = RobustScaler(copy=False)
        scaler.fit(X)
        return scaler.transform(X), scaler
lazzy.py 文件源码 项目:Power-Consumption-Prediction 作者: YoungGod 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def choose_best_lag(seq, pre_period, lags = range(1,30), Kmax = 200):
    """
    ????lazzy model,?????
    """
    models = []
    # ???
    std_sca = StandardScaler().fit(np.array(seq).reshape(-1,1))
#    rob_sca = RobustScaler().fit(np.array(seq).reshape(-1,1))
    seq = std_sca.transform(np.array(seq).reshape(-1,1))

    # ????????????,???????
    for input_lag in lags:
#        window = input_lag + pre_period
        X, Y = create_dataset(seq.flatten(), input_lag, pre_period)
        lazzy_models = lazzy_loo(X[-1], X[0:-1], Y[:-1], Kmax)
        y_pred = lazzy_prediction(X[-1], X[0:-1], Y[:-1], lazzy_models)
        err = err_evaluation(y_pred, Y[-1])
        lazzy_models.sort()
        models.append((err, input_lag, lazzy_models[0][1] ))
    models.sort()
    best_lag = models[0][1]
    best_k = models[0][2]
    return models, best_lag, best_k
test_big.py 文件源码 项目:skutil 作者: tgsmith61591 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_large_grid():
        """In this test, we purposely overfit a RandomForest to completely random data
        in order to assert that the test error will far supercede the train error.
        """

        if not SK18:
            custom_cv = KFold(n=y_train.shape[0], n_folds=3, shuffle=True, random_state=42)
        else:
            custom_cv = KFold(n_splits=3, shuffle=True, random_state=42)

        # define the pipe
        pipe = Pipeline([
            ('scaler', SelectiveScaler()),
            ('pca', SelectivePCA(weight=True)),
            ('rf', RandomForestClassifier(random_state=42))
        ])

        # define hyper parameters
        hp = {
            'scaler__scaler': [StandardScaler(), RobustScaler(), MinMaxScaler()],
            'pca__whiten': [True, False],
            'pca__weight': [True, False],
            'pca__n_components': uniform(0.75, 0.15),
            'rf__n_estimators': randint(5, 10),
            'rf__max_depth': randint(5, 15)
        }

        # define the grid
        grid = RandomizedSearchCV(pipe, hp, n_iter=2, scoring='accuracy', n_jobs=1, cv=custom_cv, random_state=42)

        # this will fail because we haven't fit yet
        assert_fails(grid.score, (ValueError, AttributeError), X_train, y_train)

        # fit the grid
        grid.fit(X_train, y_train)

        # score for coverage -- this might warn...
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            grid.score(X_train, y_train)

        # coverage:
        assert grid._estimator_type == 'classifier'

        # get predictions
        tr_pred, te_pred = grid.predict(X_train), grid.predict(X_test)

        # evaluate score (SHOULD be better than random...)
        accuracy_score(y_train, tr_pred), accuracy_score(y_test, te_pred)

        # grid score reports:
        # assert fails for bad percentile
        assert_fails(report_grid_score_detail, ValueError, **{'random_search': grid, 'percentile': 0.0})
        assert_fails(report_grid_score_detail, ValueError, **{'random_search': grid, 'percentile': 1.0})

        # assert fails for bad y_axis
        assert_fails(report_grid_score_detail, ValueError, **{'random_search': grid, 'y_axis': 'bad_axis'})

        # assert passes otherwise
        report_grid_score_detail(grid, charts=True, percentile=0.95)  # just ensure percentile works
custom_transformers.py 文件源码 项目:pandas-pipelines-custom-transformers 作者: jem1031 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def fit(self, X, y=None):
        self.rs = RobustScaler()
        self.rs.fit(X)
        self.center_ = pd.Series(self.rs.center_, index=X.columns)
        self.scale_ = pd.Series(self.rs.scale_, index=X.columns)
        return self
predict_2017_07_06_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def keras_mlp2(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(1024, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(128, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.RMSprop())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def keras_mlp3(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(32, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(4, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.SGD(nesterov=True))
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def keras_mlp3(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(256, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(32, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.SGD(nesterov=True))
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def keras_mlp2(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(1024, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(128, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.RMSprop())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def keras_mlp3(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(256, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(32, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.SGD(nesterov=True))
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def keras_mlp3(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(256, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(32, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.SGD(nesterov=True))
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def keras_mlp2(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(1024, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(128, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.RMSprop())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def keras_mlp3(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(256, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(32, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.SGD(nesterov=True))
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_4.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_4.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def keras_mlp3(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(256, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(32, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.SGD(nesterov=True))
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_03_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def keras_base(train2, y, test2, v, z, build_model, N_splits, cname, base_seed=42):
    v[cname], z[cname] = 0, 0
    scores = []
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    model = build_model(train3.shape[1])
    model.summary(line_length=120)
    model_path = '../data/working/' + cname + base_data_name() + '_keras_model.h5'
    num_splits = N_splits
    ss = model_selection.StratifiedKFold(n_splits=num_splits, random_state=base_seed)
    for n, (itrain, ival) in enumerate(ss.split(train3, y)):
        model = build_model(train3.shape[1])
        xtrain, xval = train3[itrain], train3[ival]
        ytrain, yval = y[itrain], y[ival]
        model.fit(
                xtrain, ytrain,
                epochs=10000,
                batch_size=256,
                validation_data=(xval, yval),
                verbose=0,
                callbacks=keras_fit_callbacks(model_path),
                shuffle=True
            )
        model.load_weights(model_path)
        p = model.predict(xval)
        v.loc[ival, cname] += pconvert(p).ravel()
        score = metrics.log_loss(y[ival], p)
        print(cname, 'fold %d: '%(n+1), score, now())
        scores.append(score)
        z[cname] += pconvert(model.predict(test3).ravel())
        del model
    os.remove(model_path)

    cv=np.array(scores)
    print(cv, cv.mean(), cv.std())
    z[cname] /= num_splits

#@tf_force_cpu
predict_2017_07_05_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def keras_mlp2(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(1024, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(128, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.RMSprop())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def keras_mlp3(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(256, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(32, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.SGD(nesterov=True))
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def keras_mlp2(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(1024, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(128, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.RMSprop())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def keras_mlp3(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(256, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(32, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.SGD(nesterov=True))
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_4.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_4.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def keras_mlp2(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(1024, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(128, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.RMSprop())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_4.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def keras_mlp3(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(256, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(32, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.SGD(nesterov=True))
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def keras_mlp2(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(1024, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(128, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.RMSprop())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def keras_mlp3(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)

        model = layers.Dense(256, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(32, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.SGD(nesterov=True))
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)


问题


面经


文章

微信
公众号

扫码关注公众号