def test_relieffpercent_pipeline():
"""Ensure that ReliefF with % neighbors works in a sklearn pipeline when it is parallelized"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=0.1, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3)) > 0.7
python类make_pipeline()的实例源码
def test_relieffpercent_pipeline_parallel():
"""Ensure that ReliefF with % neighbors works in a sklearn pipeline where cross_val_score is parallelized"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=0.1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3, n_jobs=-1)) > 0.7
def test_surf_pipeline():
"""Ensure that SURF works in a sklearn pipeline when it is parallelized"""
np.random.seed(240932)
clf = make_pipeline(SURF(n_features_to_select=2, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3)) > 0.7
def test_surfstar_pipeline():
"""Ensure that SURF* works in a sklearn pipeline when it is parallelized"""
np.random.seed(9238745)
clf = make_pipeline(SURFstar(n_features_to_select=2, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3)) > 0.7
def test_surfstar_pipeline_parallel():
"""Ensure that SURF* works in a sklearn pipeline where cross_val_score is parallelized"""
np.random.seed(9238745)
clf = make_pipeline(SURFstar(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3, n_jobs=-1)) > 0.7
def test_multisurf_pipeline():
"""Ensure that MultiSURF works in a sklearn pipeline when it is parallelized"""
np.random.seed(320931)
clf = make_pipeline(MultiSURF(n_features_to_select=2, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3)) > 0.7
def test_multisurf_pipeline_parallel():
"""Ensure that MultiSURF works in a sklearn pipeline where cross_val_score is parallelized"""
np.random.seed(320931)
clf = make_pipeline(MultiSURF(n_features_to_select=2),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3, n_jobs=-1)) > 0.7
def test_multisurfstar_pipeline():
"""Ensure that MultiSURF* works in a sklearn pipeline when it is parallelized"""
np.random.seed(320931)
clf = make_pipeline(MultiSURFstar(n_features_to_select=2, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features, labels, cv=3)) > 0.7
def test_relieff_pipeline_cont_endpoint():
"""Ensure that ReliefF works in a sklearn pipeline with continuous endpoint data"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=100, n_jobs=-1),
RandomForestRegressor(n_estimators=100, n_jobs=-1))
assert abs(np.mean(cross_val_score(clf, features_cont_endpoint, labels_cont_endpoint, cv=3))) < 0.5
def test_relieff_pipeline_cont_endpoint():
"""Ensure that ReliefF with % neighbors works in a sklearn pipeline with continuous endpoint data"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=0.1, n_jobs=-1),
RandomForestRegressor(n_estimators=100, n_jobs=-1))
assert abs(np.mean(cross_val_score(clf, features_cont_endpoint, labels_cont_endpoint, cv=3))) < 0.5
def test_surf_pipeline_cont_endpoint():
"""Ensure that SURF works in a sklearn pipeline with continuous endpoint data"""
np.random.seed(240932)
clf = make_pipeline(SURF(n_features_to_select=2, n_jobs=-1),
RandomForestRegressor(n_estimators=100, n_jobs=-1))
assert abs(np.mean(cross_val_score(clf, features_cont_endpoint, labels_cont_endpoint, cv=3))) < 0.5
def test_surfstar_pipeline_cont_endpoint():
"""Ensure that SURF* works in a sklearn pipeline with continuous endpoint data"""
np.random.seed(9238745)
clf = make_pipeline(SURFstar(n_features_to_select=2, n_jobs=-1),
RandomForestRegressor(n_estimators=100, n_jobs=-1))
assert abs(np.mean(cross_val_score(clf, features_cont_endpoint, labels_cont_endpoint, cv=3))) < 0.5
def test_multisurf_pipeline_cont_endpoint():
"""Ensure that MultiSURF works in a sklearn pipeline with continuous endpoint data"""
np.random.seed(320931)
clf = make_pipeline(MultiSURF(n_features_to_select=2, n_jobs=-1),
RandomForestRegressor(n_estimators=100, n_jobs=-1))
assert abs(np.mean(cross_val_score(clf, features_cont_endpoint, labels_cont_endpoint, cv=3))) < 0.5
def test_relieff_pipeline_mixed_attributes():
"""Ensure that ReliefF works in a sklearn pipeline with mixed attributes"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=100, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_mixed_attributes, labels_mixed_attributes, cv=3)) > 0.7
def test_relieffpercent_pipeline_mixed_attributes():
"""Ensure that ReliefF with % neighbors works in a sklearn pipeline with mixed attributes"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=0.1, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_mixed_attributes, labels_mixed_attributes, cv=3)) > 0.7
def test_surf_pipeline_mixed_attributes():
"""Ensure that SURF works in a sklearn pipeline with mixed attributes"""
np.random.seed(240932)
clf = make_pipeline(SURF(n_features_to_select=2, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_mixed_attributes, labels_mixed_attributes, cv=3)) > 0.7
def test_surfstar_pipeline_mixed_attributes():
"""Ensure that SURF* works in a sklearn pipeline with mixed attributes"""
np.random.seed(9238745)
clf = make_pipeline(SURFstar(n_features_to_select=2, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_mixed_attributes, labels_mixed_attributes, cv=3)) > 0.7
def test_multisurf_pipeline_mixed_attributes():
"""Ensure that MultiSURF works in a sklearn pipeline with mixed attributes"""
np.random.seed(320931)
clf = make_pipeline(MultiSURF(n_features_to_select=2, n_jobs=-1),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_mixed_attributes, labels_mixed_attributes, cv=3)) > 0.7
def test_relieff_pipeline_missing_values():
"""Ensure that ReliefF works in a sklearn pipeline with missing values"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=100, n_jobs=-1),
Imputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_missing_values, labels_missing_values, cv=3)) > 0.7
def test_relieffpercent_pipeline_missing_values():
"""Ensure that ReliefF with % neighbors works in a sklearn pipeline with missing values"""
np.random.seed(49082)
clf = make_pipeline(ReliefF(n_features_to_select=2, n_neighbors=0.1, n_jobs=-1),
Imputer(),
RandomForestClassifier(n_estimators=100, n_jobs=-1))
assert np.mean(cross_val_score(clf, features_missing_values, labels_missing_values, cv=3)) > 0.7