python类NearestCentroid()的实例源码

test_nearest_centroid.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_classification_toy():
    # Check classification on a toy dataset, including sparse versions.
    clf = NearestCentroid()
    clf.fit(X, y)
    assert_array_equal(clf.predict(T), true_result)

    # Same test, but with a sparse matrix to fit and test.
    clf = NearestCentroid()
    clf.fit(X_csr, y)
    assert_array_equal(clf.predict(T_csr), true_result)

    # Fit with sparse, test with non-sparse
    clf = NearestCentroid()
    clf.fit(X_csr, y)
    assert_array_equal(clf.predict(T), true_result)

    # Fit with non-sparse, test with sparse
    clf = NearestCentroid()
    clf.fit(X, y)
    assert_array_equal(clf.predict(T_csr), true_result)

    # Fit and predict with non-CSR sparse matrices
    clf = NearestCentroid()
    clf.fit(X_csr.tocoo(), y)
    assert_array_equal(clf.predict(T_csr.tolil()), true_result)
classification.py 文件源码 项目:sef 作者: passalis 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def evaluate_ncc(train_data, train_labels, test_data, test_labels):
    ncc = NearestCentroid()
    ncc.fit(train_data, train_labels)
    ncc_test = ncc.score(test_data, test_labels)
    return ncc_test
test_linear.py 文件源码 项目:sef 作者: passalis 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_linear_sef():
    """
    Performs some basic testing using the LinearSEF
    :return:
    """
    np.random.seed(1)
    train_data = np.random.randn(100, 50)
    train_labels = np.random.randint(0, 2, 100)

    proj = LinearSEF(50, output_dimensionality=12)
    proj._initialize(train_data)
    proj_data = proj.transform(train_data, batch_size=8)
    assert proj_data.shape[0] == 100
    assert proj_data.shape[1] == 12

    ncc = NearestCentroid()
    ncc.fit(proj_data, train_labels)
    acc_before = ncc.score(proj_data, train_labels)

    loss = proj.fit(data=train_data, target_labels=train_labels, epochs=200,
                    target='supervised', batch_size=8, regularizer_weight=0, learning_rate=0.0001,  verbose=False)

    # Ensure that loss is reducing
    assert loss[0] > loss[-1]

    proj_data = proj.transform(train_data, batch_size=8)
    assert proj_data.shape[0] == 100
    assert proj_data.shape[1] == 12

    ncc = NearestCentroid()
    ncc.fit(proj_data, train_labels)
    acc_after = ncc.score(proj_data, train_labels)

    assert acc_after > acc_before
test_kernel.py 文件源码 项目:sef 作者: passalis 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_kernel_sef():
    """
    Performs some basic testing using the KernelSEF
    :return:
    """
    np.random.seed(1)
    train_data = np.random.randn(100, 50)
    train_labels = np.random.randint(0, 2, 100)

    proj = KernelSEF(train_data, 50, output_dimensionality=12, kernel_type='rbf')
    proj._initialize(train_data)
    proj_data = proj.transform(train_data, batch_size=8)
    assert proj_data.shape[0] == 100
    assert proj_data.shape[1] == 12

    ncc = NearestCentroid()
    ncc.fit(proj_data, train_labels)
    acc_before = ncc.score(proj_data, train_labels)

    loss = proj.fit(data=train_data, target_labels=train_labels, epochs=200,
                    target='supervised', batch_size=8, regularizer_weight=0, learning_rate=0.0001,  verbose=False)

    # Ensure that loss is reducing
    assert loss[0] > loss[-1]

    proj_data = proj.transform(train_data, batch_size=8)
    assert proj_data.shape[0] == 100
    assert proj_data.shape[1] == 12

    ncc = NearestCentroid()
    ncc.fit(proj_data, train_labels)
    acc_after = ncc.score(proj_data, train_labels)

    assert acc_after > acc_before
outlier_heuristics.py 文件源码 项目:tf_literature_based_discovery 作者: xflows 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _d_cs_indices(self):
        classifier=NearestCentroid(metric='cosine')
        #classifier=KNeighborsClassifier(n_neighbors=5)
        return MisclassificationIndices.calculate(classifier,
                                                  BowDataset(self._tfidf_matrix(),self._classes),
                                                  n_folds=10)['inds']
test_nearest_centroid.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_precomputed():
    clf = NearestCentroid(metric="precomputed")
    clf.fit(X, y)
    S = pairwise_distances(T, clf.centroids_)
    assert_array_equal(clf.predict(S), true_result)
test_nearest_centroid.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_iris():
    # Check consistency on dataset iris.
    for metric in ('euclidean', 'cosine'):
        clf = NearestCentroid(metric=metric).fit(iris.data, iris.target)
        score = np.mean(clf.predict(iris.data) == iris.target)
        assert score > 0.9, "Failed with score = " + str(score)
test_nearest_centroid.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_iris_shrinkage():
    # Check consistency on dataset iris, when using shrinkage.
    for metric in ('euclidean', 'cosine'):
        for shrink_threshold in [None, 0.1, 0.5]:
            clf = NearestCentroid(metric=metric,
                                  shrink_threshold=shrink_threshold)
            clf = clf.fit(iris.data, iris.target)
            score = np.mean(clf.predict(iris.data) == iris.target)
            assert score > 0.8, "Failed with score = " + str(score)
test_nearest_centroid.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def test_pickle():
    import pickle

    # classification
    obj = NearestCentroid()
    obj.fit(iris.data, iris.target)
    score = obj.score(iris.data, iris.target)
    s = pickle.dumps(obj)

    obj2 = pickle.loads(s)
    assert_equal(type(obj2), obj.__class__)
    score2 = obj2.score(iris.data, iris.target)
    assert_array_equal(score, score2,
                       "Failed to generate same score"
                       " after pickling (classification).")
test_nearest_centroid.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_predict_translated_data():
    # Test that NearestCentroid gives same results on translated data

    rng = np.random.RandomState(0)
    X = rng.rand(50, 50)
    y = rng.randint(0, 3, 50)
    noise = rng.rand(50)
    clf = NearestCentroid(shrink_threshold=0.1)
    clf.fit(X, y)
    y_init = clf.predict(X)
    clf = NearestCentroid(shrink_threshold=0.1)
    X_noise = X + noise
    clf.fit(X_noise, y)
    y_translate = clf.predict(X_noise)
    assert_array_equal(y_init, y_translate)
test_nearest_centroid.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_manhattan_metric():
    # Test the manhattan metric.

    clf = NearestCentroid(metric='manhattan')
    clf.fit(X, y)
    dense_centroid = clf.centroids_
    clf.fit(X_csr, y)
    assert_array_equal(clf.centroids_, dense_centroid)
    assert_array_equal(dense_centroid, [[-1, -1], [1, 1]])


问题


面经


文章

微信
公众号

扫码关注公众号