python类KNeighborsRegressor()的实例源码

model5.py 文件源码 项目:Black-Swan 作者: 12190143 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def main():
    df_train0 = pd.read_csv("train.csv")
    df_train1 = pd.read_csv("train1.csv")
    df_train2 = pd.read_csv("train2.csv")
    df_train3 = pd.read_csv("train3.csv")
    df_train_list = [df_train0]
    df_train = pd.concat(df_train_list)
    len_train = len(df_train)

    df_test = pd.read_csv("test2.csv")
    df_train = df_train.append(df_test)[df_train.columns.tolist()]

    df_date = pd.read_csv("date.csv")
    df_ts = pd.read_csv("ts_feature2_simple.csv")

    print df_test.head()
    df_train = df_train.merge(df_date, on="date", how="left")

    df_train = df_train.merge(df_ts, on=["tollgate_id", "hour", "miniute", "direction"], how="left")

    data = pd.DataFrame.reset_index(df_train)
    data = data.drop("index", axis=1)
    print data.head(1)

    data = feature_transform_knn(key=1, data= data)

    y = data.ix[:len_train - 1]["volume"]
    x = data.ix[:len_train - 1, 8:]
    x1 = data.ix[len_train:, 8:]

    regressor_cubic = KNeighborsRegressor(n_neighbors=15,)
    regressor_cubic.fit(x, y)

    yhat = regressor_cubic.predict(x1)

    df_test["volume"] = yhat
    df_test = df_test[['tollgate_id', 'time_window', 'direction', 'volume']]
    df_test.to_csv("result/result_knn_"+str(np.mean(yhat))+".csv", index=False)

    print np.mean(yhat)
test_neighbors.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_precomputed_cross_validation():
    # Ensure array is split correctly
    rng = np.random.RandomState(0)
    X = rng.rand(20, 2)
    D = pairwise_distances(X, metric='euclidean')
    y = rng.randint(3, size=20)
    for Est in (neighbors.KNeighborsClassifier,
                neighbors.RadiusNeighborsClassifier,
                neighbors.KNeighborsRegressor,
                neighbors.RadiusNeighborsRegressor):
        metric_score = cross_val_score(Est(), X, y)
        precomp_score = cross_val_score(Est(metric='precomputed'), D, y)
        assert_array_equal(metric_score, precomp_score)
test_neighbors.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_neighbors_regressors_zero_distance():
    # Test radius-based regressor, when distance to a sample is zero.

    X = np.array([[1.0, 1.0], [1.0, 1.0], [2.0, 2.0], [2.5, 2.5]])
    y = np.array([1.0, 1.5, 2.0, 0.0])
    radius = 0.2
    z = np.array([[1.1, 1.1], [2.0, 2.0]])

    rnn_correct_labels = np.array([1.25, 2.0])

    knn_correct_unif = np.array([1.25, 1.0])
    knn_correct_dist = np.array([1.25, 2.0])

    for algorithm in ALGORITHMS:
        # we don't test for weights=_weight_func since user will be expected
        # to handle zero distances themselves in the function.
        for weights in ['uniform', 'distance']:
            rnn = neighbors.RadiusNeighborsRegressor(radius=radius,
                                                     weights=weights,
                                                     algorithm=algorithm)
            rnn.fit(X, y)
            assert_array_almost_equal(rnn_correct_labels, rnn.predict(z))

        for weights, corr_labels in zip(['uniform', 'distance'],
                                        [knn_correct_unif, knn_correct_dist]):
            knn = neighbors.KNeighborsRegressor(n_neighbors=2,
                                                weights=weights,
                                                algorithm=algorithm)
            knn.fit(X, y)
            assert_array_almost_equal(corr_labels, knn.predict(z))
test_neighbors.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def test_predict_sparse_ball_kd_tree():
    rng = np.random.RandomState(0)
    X = rng.rand(5, 5)
    y = rng.randint(0, 2, 5)
    nbrs1 = neighbors.KNeighborsClassifier(1, algorithm='kd_tree')
    nbrs2 = neighbors.KNeighborsRegressor(1, algorithm='ball_tree')
    for model in [nbrs1, nbrs2]:
        model.fit(X, y)
        assert_raises(ValueError, model.predict, csr_matrix(X))
skilearnAlgorithn.py 文件源码 项目:GZ_travelTime 作者: zhilonglu 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_model_list():
    model_list, name_list = [], []

    # model_list.append(linear_model.LinearRegression())
    # name_list.append('LR')

    # model_list.append(gaussian_process.GaussianProcessRegressor(alpha=1e-10))
    # name_list.append('GaussianProcess')

    # model_list.append(KNeighborsRegressor(weights = 'uniform',n_neighbors=28))
    # name_list.append('KNN_unif')
    #
    # model_list.append(KNeighborsRegressor(weights = 'distance',n_neighbors=28))
    # name_list.append('KNN_dist')
    #
    # model_list.append(SVR(kernel = 'poly', C = 1, gamma = 'auto', coef0 = 0, degree = 2))
    # name_list.append('SVR_poly')
    # #
    model_list.append(SVR(kernel = 'rbf', C = 0.3, gamma = 'auto'))
    name_list.append('SVR_rbf')
    # #
    # model_list.append(DecisionTreeRegressor())
    # name_list.append('DT')
    #
    # model_list.append(RandomForestRegressor(n_estimators=150, max_depth=None,min_samples_split=2, random_state=0))
    # name_list.append('RF')
    #
    # model_list.append(ExtraTreesRegressor(n_estimators=150, max_depth=None, max_features='auto', min_samples_split=2, random_state=0))
    # name_list.append('ET')

    return model_list,name_list

#MAPE
FeatureEngineering.py 文件源码 项目:GZ_travelTime 作者: zhilonglu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def get_model_list():
    model_list, name_list = [], []

    # model_list.append(linear_model.LinearRegression())
    # name_list.append('LR')

    # model_list.append(gaussian_process.GaussianProcessRegressor(alpha=1e-10))
    # name_list.append('GaussianProcess')

    # model_list.append(KNeighborsRegressor(weights = 'uniform',n_neighbors=28))
    # name_list.append('KNN_unif')
    #
    # model_list.append(KNeighborsRegressor(weights = 'distance',n_neighbors=28))
    # name_list.append('KNN_dist')
    #
    # model_list.append(SVR(kernel = 'poly', C = 1, gamma = 'auto', coef0 = 0, degree = 2))
    # name_list.append('SVR_poly')
    # #
    model_list.append(SVR(kernel = 'rbf', C = 0.3, gamma = 'auto'))
    name_list.append('SVR_rbf')
    # #
    # model_list.append(DecisionTreeRegressor())
    # name_list.append('DT')
    #
    # model_list.append(RandomForestRegressor(n_estimators=150, max_depth=None,min_samples_split=2, random_state=0))
    # name_list.append('RF')
    #
    # model_list.append(ExtraTreesRegressor(n_estimators=150, max_depth=None, max_features='auto', min_samples_split=2, random_state=0))
    # name_list.append('ET')

    return model_list,name_list

#????
model.py 文件源码 项目:Tback 作者: ideaplat 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_classifier(self, X, Y):
        """ ????????
        :param X: ????
        :param Y: ??????
        :return: ??
        """

        clf = KNeighborsRegressor(weights='uniform')
        clf.fit(X, Y)
        return clf
predictive_imputer.py 文件源码 项目:predictive_imputer 作者: log0ymxm 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def fit(self, X, y=None, **kwargs):
        X = check_array(X, dtype=np.float64, force_all_finite=False)

        X_nan = np.isnan(X)
        most_by_nan = X_nan.sum(axis=0).argsort()[::-1]

        imputed = self.initial_imputer.fit_transform(X)
        new_imputed = imputed.copy()

        self.statistics_ = np.ma.getdata(X)
        self.gamma_ = []

        if self.f_model == "RandomForest":
            self.estimators_ = [RandomForestRegressor(n_estimators=50, n_jobs=-1, random_state=i, **kwargs) for i in range(X.shape[1])]
        elif self.f_model == "KNN":
            self.estimators_ = [KNeighborsRegressor(n_neighbors=min(5, sum(~X_nan[:, i])), **kwargs) for i in range(X.shape[1])]
        elif self.f_model == "PCA":
            self.estimators_ = [PCA(n_components=int(np.sqrt(min(X.shape))), whiten=True, **kwargs)]

        for iter in range(self.max_iter):
            if len(self.estimators_) > 1:
                for i in most_by_nan:

                    X_s = np.delete(new_imputed, i, 1)
                    y_nan = X_nan[:, i]

                    X_train = X_s[~y_nan]
                    y_train = new_imputed[~y_nan, i]
                    X_unk = X_s[y_nan]

                    estimator_ = self.estimators_[i]
                    estimator_.fit(X_train, y_train)
                    if len(X_unk) > 0:
                        new_imputed[y_nan, i] = estimator_.predict(X_unk)

            else:
                estimator_ = self.estimators_[0]
                estimator_.fit(new_imputed)
                new_imputed[X_nan] = estimator_.inverse_transform(estimator_.transform(new_imputed))[X_nan]

            gamma = ((new_imputed-imputed)**2/(1e-6+new_imputed.var(axis=0))).sum()/(1e-6+X_nan.sum())
            self.gamma_.append(gamma)
            if np.abs(np.diff(self.gamma_[-2:])) < self.tol:
                break

        return self
st_train_model.py 文件源码 项目:Smart-Trader 作者: i-sultan 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def train_validate(self, df, validation_range, update_progress):
        """ Train and validate regressor on df samples with indices listed in validation_range. """
        training_summary = pd.DataFrame()
        first_sample, samples, labels = prepare_samples(df, self.indicators_samples)

        # progress bar parameters
        total_steps = len(self.model_params['sample_presentation']) * \
                      len(self.model_params['exp_weight']) * len(self.model_params['k'])
        completed_steps = 0

        # loop over model parameters
        for sample_presentation in self.model_params['sample_presentation']:
            presented_samples, presented_labels, normalizer = set_presentation(samples, labels, sample_presentation, self.indicators_samples['Daily'])

            for exp_weight in self.model_params['exp_weight']:
                weighted_samples = apply_exp_weights(presented_samples, exp_weight)

                for k in self.model_params['k']:
                    model, total_train_time, total_test_time = [[0 for i in range (len(h))] for j in range(3)]
                    error_list, relative_error_list, hit_list = [[[] for i in range (len(h))] for j in range(3)]
                    params = (sample_presentation, exp_weight, k)

                    # model training and validation core
                    for h_index in range(len(h)):
                        for index in validation_range:
                            i = index-first_sample                        
                            x_train, x_validate = weighted_samples[:i-h[h_index]+1,:], weighted_samples[i,:] #need to stop training h steps before test
                            y_train, y_validate = presented_labels[h_index][:i-h[h_index]+1], presented_labels[h_index][i]
                            #train
                            t1 = time.time()
                            model[h_index] = KNeighborsRegressor(n_neighbors=k) # train a separate model for each horizon
                            model[h_index].fit(x_train, y_train)
                            t2 = time.time()
                            train_time = (t2-t1)
                            #test
                            y_predict = model[h_index].predict(x_validate.reshape(1,-1))
                            test_time = (time.time()-t2)
                            #apend new results
                            y_validate_absolute = remove_presentation(y_validate,normalizer[i], sample_presentation)
                            y_predict_absolute  = remove_presentation(y_predict ,normalizer[i], sample_presentation)
                            error_list[h_index] += [y_validate_absolute - y_predict_absolute]
                            relative_error_list[h_index] += [(y_validate_absolute - y_predict_absolute)/y_validate_absolute]
                            hit_list[h_index] += [(y_validate-x_validate[-1])*(y_predict-x_validate[-1]) > 0]

                            total_train_time[h_index] += train_time
                            total_test_time[h_index] += test_time
                            if i == len(presented_labels[h_index])-1:
                                #very last training point, include last training oppurtunity
                                x_train = weighted_samples[:i+1,:]
                                y_train = presented_labels[h_index][:i+1]
                                model[h_index].fit(x_train, y_train)
                                break

                    completed_steps += 1
                    update_progress(100.0 * completed_steps/total_steps)

                    #save last trained model, and add to training summary
                    training_summary = training_summary.append(summarize(self, model, error_list, relative_error_list, hit_list, 
                                                                        params, total_train_time, total_test_time))
        return training_summary, make_presentable(training_summary, self.summary_name)
RegressionUniformBlending.py 文件源码 项目:AirTicketPredicting 作者: junlulocky 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, isTrain):
        super(RegressionUniformBlending, self).__init__(isTrain)
        # data preprocessing
        #self.dataPreprocessing()

        self.net1 = NeuralNet(
                        layers=[  # three layers: one hidden layer
                            ('input', layers.InputLayer),
                            ('hidden', layers.DenseLayer),
                            #('hidden2', layers.DenseLayer),
                            #('hidden3', layers.DenseLayer),
                            ('output', layers.DenseLayer),
                            ],
                        # layer parameters:
                        input_shape=(None, 13),  # input dimension is 13
                        hidden_num_units=6,  # number of units in hidden layer
                        #hidden2_num_units=8,  # number of units in hidden layer
                        #hidden3_num_units=4,  # number of units in hidden layer
                        output_nonlinearity=None,  # output layer uses sigmoid function
                        output_num_units=1,  # output dimension is 1

                        # obejctive function
                        objective_loss_function = lasagne.objectives.squared_error,

                        # optimization method:
                        update=lasagne.updates.nesterov_momentum,
                        update_learning_rate=0.002,
                        update_momentum=0.4,

                        # use 25% as validation
                        train_split=TrainSplit(eval_size=0.2),

                        regression=True,  # flag to indicate we're dealing with regression problem
                        max_epochs=100,  # we want to train this many epochs
                        verbose=0,
                        )

        # Create linear regression object
        self.linRegr = linear_model.LinearRegression()

        # Create KNN regression object
        self.knn = neighbors.KNeighborsRegressor(86, weights='distance')

        # Create Decision Tree regression object
        self.decisionTree = DecisionTreeRegressor(max_depth=7, max_features=None)

        # Create AdaBoost regression object
        decisionReg = DecisionTreeRegressor(max_depth=10)
        rng = np.random.RandomState(1)
        self.adaReg = AdaBoostRegressor(decisionReg,
                          n_estimators=400,
                          random_state=rng)

        # Create linear regression object
        self.model = RandomForestRegressor(max_features='sqrt', n_estimators=32, max_depth=39)
value.py 文件源码 项目:KerasRL 作者: aejax 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, S, A, maxlen=1000, mode=None, embedding_dim=1, **kwargs):
        super(TableQ2, self).__init__(**kwargs)
        self.S = S
        self.A = A

        if mode == None:
            if type(S) == type(A) == gym.spaces.Discrete:
                self.mode = 'array'
            elif type(A) == gym.spaces.Discrete:
                self.mode = 'dictionary'
            else:
                pass
        self.mode = mode
        self.maxlen = maxlen
        self.embedding_dim = embedding_dim

        if self.mode == 'array':
            s_dim = get_space_dim(S)
            a_dim = get_space_dim(A)
            self.table = np.zeros((s_dim, a_dim))
            self.maxlen = s_dim
        elif self.mode == 'dictionary':
            self.table = {0: np.zeros(self.A.n)}
        elif self.mode == 'tables':
            self.k = 4
            self.neigh = KNeighborsRegressor(n_neighbors=self.k)
            self.states = np.zeros((self.maxlen,self.embedding_dim))
            self.values = np.zeros((self.maxlen, self.A.n))
            self.recency= np.zeros((self.maxlen,))
            self.i = 0
        elif self.mode == 'action_tables':
            #self.states = []
            #self.recency= []
            self.k = 4
            self.action_tables = [ [[],[], KNeighborsRegressor(n_neighbors=self.k), []]
                                   for _ in xrange(self.A.n)]
            """
            for at in self.action_tables:
                states, values, neigh, recency = at
                for _ in xrange(self.k):
                    if self.embedding_dim > 1:
                        states.append(np.ones(self.embedding_dim))
                    else:
                        states.append(1)
                    values.append(0)
                    recency.append(0)
                #print states, values
                #neigh.fit(np.array(states), np.array(values))
                s = self._list_to_sklearn(states)
                v = self._list_to_sklearn(values)
                #print s, v
                neigh.fit(s, v)
            """
        else:
            raise NotImplementedError, 'Sorry, TableQ only supports three modes.'
partitions.py 文件源码 项目:neoSBM 作者: piratepeel 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot(k=1,xyzFile='xyz_synth_surf.txt',write=False):
    with open(xyzFile) as f:
        xyz=np.float64([row.split() for row in f.readlines()])

    #~ plt.figure()
    #~ plt.scatter(xyz[:, 0], xyz[:, 1], c=xyz[:,2])
    #~ plt.plot(xyz[:3, 0], xyz[:3, 1], c='k', marker='s',ms=10)
    #~ plt.plot(xyz[:50, 0], xyz[:50, 1], xyz[:50,2], c='k', marker='s',ms=3)

    fig=plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.scatter(xyz[:, 0], xyz[:, 1], xyz[:,2], c=xyz[:,2], marker='o',linewidths=0)
    ax.plot(xyz[:50, 0], xyz[:50, 1], xyz[:50,2], c='k', marker='s',ms=3)
    #~ ax.scatter(xyz[:50, 0], xyz[:50, 1], xyz[:50,2], c='k', marker='s',linewidths=0,cmap=plt.cm.bone)

    xmin=np.min(xyz[:,0])
    xmax=np.max(xyz[:,0])
    step=(xmax-xmin)/100.

    x_=np.arange(np.min(xyz[:,0]),np.max(xyz[:,0]),step)
    y_=np.arange(np.min(xyz[:,0]),np.max(xyz[:,0]),step)
    xx,yy=np.meshgrid(x_,y_)

    xy=np.append(xx.ravel()[:,np.newaxis],yy.ravel()[:,np.newaxis],1)

    knn = neighbors.KNeighborsRegressor(k, weights='distance',p=1)
    z_= knn.fit(xyz[:,:2],xyz[:,2]).predict(xy)


    fig=plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    ax.plot_surface(xx, yy, z_.reshape(np.shape(xx)),rstride=1, cstride=1, cmap=plt.cm.spectral,
                       linewidth=0, antialiased=False)
    ax.plot(xyz[:50, 0], xyz[:50, 1], xyz[:50,2], c='k', marker='s',ms=3)
    if write:
        with open('knn_'+ xyzFile,'w') as f:
            for xi,yi,zi in zip(xx.ravel(),yy.ravel(),z_):
                f.write('%f %f %f\n' % (xi,yi,zi))




#################################################################
#calculate a distance matrix based on variation of information
model2.py 文件源码 项目:Black-Swan 作者: 12190143 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def main():
    df_test = pd.read_csv("test2.csv")

    df_train0 = pd.read_csv("train.csv")

    df_train_list = [df_train0,]
    random.shuffle(df_train_list)
    df_train = pd.concat(df_train_list)

    df_ts = pd.read_csv("ts_feature2_simple.csv")
    df_date = pd.read_csv("date.csv")

    df_train = df_train.merge(df_date, on="date", how="left")
    df_train = df_train.merge(df_ts, on=["tollgate_id", "hour", "miniute", "direction"], how="left")

    df_test = df_test.merge(df_date, on="date", how="left")
    df_test = df_test.merge(df_ts, on=["tollgate_id", "hour", "miniute", "direction"], how="left")

    df_train_grouped = df_train.groupby(["tollgate_id", "direction"])
    df_test_grouped = df_test.groupby(["tollgate_id", "direction"])
    result = []
    oob = []
    for key, train_data in df_train_grouped:

        test_data = df_test_grouped.get_group(key)
        len_train = len(train_data)
        train_data = train_data.append(test_data)[train_data.columns.tolist()]


        train_data = feature_transform_knn(key, train_data)

        regressor_cubic = KNeighborsRegressor(n_neighbors=8, algorithm="auto")

        train_data = pd.DataFrame.reset_index(train_data)
        train_data = train_data.drop("index", axis=1)
        y = train_data.ix[:len_train - 1, :]["volume"]


        x = train_data.ix[:len_train - 1, 8:]
        print x.head()
        x1 = train_data.ix[len_train:, 8:]

        regressor_cubic.fit(x, y)
        yhat = regressor_cubic.predict(x1)

        test_data["volume"] = yhat
        result.append(test_data[['tollgate_id', 'time_window', 'direction', 'volume']])


    df_result = pd.concat(result, axis=0)
    print np.mean(df_result["volume"])
    df_result.to_csv("result/result_split_knn"+str(np.mean(df_result["volume"]))+".csv", index=False)

    print np.mean(oob)
test_neighbors.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_precomputed(random_state=42):
    """Tests unsupervised NearestNeighbors with a distance matrix."""
    # Note: smaller samples may result in spurious test success
    rng = np.random.RandomState(random_state)
    X = rng.random_sample((10, 4))
    Y = rng.random_sample((3, 4))
    DXX = metrics.pairwise_distances(X, metric='euclidean')
    DYX = metrics.pairwise_distances(Y, X, metric='euclidean')
    for method in ['kneighbors']:
        # TODO: also test radius_neighbors, but requires different assertion

        # As a feature matrix (n_samples by n_features)
        nbrs_X = neighbors.NearestNeighbors(n_neighbors=3)
        nbrs_X.fit(X)
        dist_X, ind_X = getattr(nbrs_X, method)(Y)

        # As a dense distance matrix (n_samples by n_samples)
        nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='brute',
                                            metric='precomputed')
        nbrs_D.fit(DXX)
        dist_D, ind_D = getattr(nbrs_D, method)(DYX)
        assert_array_almost_equal(dist_X, dist_D)
        assert_array_almost_equal(ind_X, ind_D)

        # Check auto works too
        nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='auto',
                                            metric='precomputed')
        nbrs_D.fit(DXX)
        dist_D, ind_D = getattr(nbrs_D, method)(DYX)
        assert_array_almost_equal(dist_X, dist_D)
        assert_array_almost_equal(ind_X, ind_D)

        # Check X=None in prediction
        dist_X, ind_X = getattr(nbrs_X, method)(None)
        dist_D, ind_D = getattr(nbrs_D, method)(None)
        assert_array_almost_equal(dist_X, dist_D)
        assert_array_almost_equal(ind_X, ind_D)

        # Must raise a ValueError if the matrix is not of correct shape
        assert_raises(ValueError, getattr(nbrs_D, method), X)

    target = np.arange(X.shape[0])
    for Est in (neighbors.KNeighborsClassifier,
                neighbors.RadiusNeighborsClassifier,
                neighbors.KNeighborsRegressor,
                neighbors.RadiusNeighborsRegressor):
        print(Est)
        est = Est(metric='euclidean')
        est.radius = est.n_neighbors = 1
        pred_X = est.fit(X, target).predict(Y)
        est.metric = 'precomputed'
        pred_D = est.fit(DXX, target).predict(DYX)
        assert_array_almost_equal(pred_X, pred_D)
test_neighbors.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_neighbors_badargs():
    # Test bad argument values: these should all raise ValueErrors
    assert_raises(ValueError,
                  neighbors.NearestNeighbors,
                  algorithm='blah')

    X = rng.random_sample((10, 2))
    Xsparse = csr_matrix(X)
    y = np.ones(10)

    for cls in (neighbors.KNeighborsClassifier,
                neighbors.RadiusNeighborsClassifier,
                neighbors.KNeighborsRegressor,
                neighbors.RadiusNeighborsRegressor):
        assert_raises(ValueError,
                      cls,
                      weights='blah')
        assert_raises(ValueError,
                      cls, p=-1)
        assert_raises(ValueError,
                      cls, algorithm='blah')
        nbrs = cls(algorithm='ball_tree', metric='haversine')
        assert_raises(ValueError,
                      nbrs.predict,
                      X)
        assert_raises(ValueError,
                      ignore_warnings(nbrs.fit),
                      Xsparse, y)
        nbrs = cls()
        assert_raises(ValueError,
                      nbrs.fit,
                      np.ones((0, 2)), np.ones(0))
        assert_raises(ValueError,
                      nbrs.fit,
                      X[:, :, None], y)
        nbrs.fit(X, y)
        assert_raises(ValueError,
                      nbrs.predict,
                      [[]])
        if (isinstance(cls, neighbors.KNeighborsClassifier) or
                isinstance(cls, neighbors.KNeighborsRegressor)):
            nbrs = cls(n_neighbors=-1)
            assert_raises(ValueError, nbrs.fit, X, y)

    nbrs = neighbors.NearestNeighbors().fit(X)

    assert_raises(ValueError, nbrs.kneighbors_graph, X, mode='blah')
    assert_raises(ValueError, nbrs.radius_neighbors_graph, X, mode='blah')
allinone.py 文件源码 项目:GZ_travelTime 作者: zhilonglu 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_model_list(task_name):

    model_list, name_list = [], []

    model_list.append(linear_model.LinearRegression())
    name_list.append('LR')
    #
    model_list.append(linear_model.SGDRegressor())
    name_list.append('LR_SGD')

    model_list.append(linear_model.Lasso(alpha = 1.0))
    name_list.append('Lasso')

    model_list.append(linear_model.Ridge (alpha = 1.0))
    name_list.append('Ridge')

    model_list.append(linear_model.LassoLars(alpha=.1))
    name_list.append('LassoLars')

    model_list.append(linear_model.BayesianRidge())
    name_list.append('BayesianRidge')

    model_list.append(KernelRidge(alpha=1.0))
    name_list.append('KernelRidge')

    model_list.append(gaussian_process.GaussianProcess(theta0=1e-2, thetaL=1e-4, thetaU=1e-1))
    name_list.append('GaussianProcess')

    model_list.append(KNeighborsRegressor(weights = 'uniform',n_neighbors=3))
    name_list.append('KNN_unif')

    model_list.append(KNeighborsRegressor(weights = 'distance',n_neighbors=3))
    name_list.append('KNN_dist')

    model_list.append(SVR(kernel = 'linear', C = 1, gamma = 'auto', coef0 = 0, degree = 2))
    name_list.append('SVM_linear')

    model_list.append(SVR(kernel = 'poly', C = 1, gamma = 'auto', coef0 = 0, degree = 2))
    name_list.append('SVM_poly')

    model_list.append(SVR(kernel = 'rbf', C = 1, gamma = 'auto', coef0 = 0, degree = 2))
    name_list.append('SVM_rbf')

    model_list.append(DecisionTreeRegressor())
    name_list.append('DT')

    model_list.append(RandomForestRegressor(n_estimators=100, max_depth=None,min_samples_split=2, random_state=0))
    name_list.append('RF')

    model_list.append(ExtraTreesRegressor(n_estimators=100, max_depth=None, max_features='auto', min_samples_split=2, random_state=0))
    name_list.append('ET')

    return model_list, name_list


问题


面经


文章

微信
公众号

扫码关注公众号