def test_learning_curve():
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockImprovingEstimator(20)
with warnings.catch_warnings(record=True) as w:
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=3, train_sizes=np.linspace(0.1, 1.0, 10))
if len(w) > 0:
raise RuntimeError("Unexpected warning: %r" % w[0].message)
assert_equal(train_scores.shape, (10, 3))
assert_equal(test_scores.shape, (10, 3))
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1),
np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1),
np.linspace(0.1, 1.0, 10))
python类learning_curve()的实例源码
def test_learning_curve_verbose():
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockImprovingEstimator(20)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
train_sizes, train_scores, test_scores = \
learning_curve(estimator, X, y, cv=3, verbose=1)
finally:
out = sys.stdout.getvalue()
sys.stdout.close()
sys.stdout = old_stdout
assert("[learning_curve]" in out)
def test_learning_curve_batch_and_incremental_learning_are_equal():
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
train_sizes = np.linspace(0.2, 1.0, 5)
estimator = PassiveAggressiveClassifier(n_iter=1, shuffle=False)
train_sizes_inc, train_scores_inc, test_scores_inc = \
learning_curve(
estimator, X, y, train_sizes=train_sizes,
cv=3, exploit_incremental_learning=True)
train_sizes_batch, train_scores_batch, test_scores_batch = \
learning_curve(
estimator, X, y, cv=3, train_sizes=train_sizes,
exploit_incremental_learning=False)
assert_array_equal(train_sizes_inc, train_sizes_batch)
assert_array_almost_equal(train_scores_inc.mean(axis=1),
train_scores_batch.mean(axis=1))
assert_array_almost_equal(test_scores_inc.mean(axis=1),
test_scores_batch.mean(axis=1))
def plot_learning_curve(self):
# Plot the learning curve
plt.figure(figsize=(9, 6))
train_sizes, train_scores, test_scores = learning_curve(
self.model, X=self.X_train, y=self.y_train,
cv=3, scoring='neg_mean_squared_error')
self.plot_learning_curve_helper(train_sizes, train_scores, test_scores, 'Learning Curve')
plt.show()
def plot_learning_curve(estimators, X, y, cv=10, scoring=None, n_jobs=1):
figsize = (6.4 * len(estimators), 4.8)
fig, axes = plt.subplots(nrows=1, ncols=len(estimators), figsize=figsize)
if len(estimators) == 1:
axes = [axes]
for ax, estimator in zip(axes, estimators):
train_sizes, train_scores, test_scores = learning_curve(
estimator=estimator,
X=X,
y=y,
train_sizes=np.linspace(start=0.1, stop=1.0, num=10),
cv=cv,
scoring=None,
n_jobs=n_jobs,
verbose=1
)
xlabel = 'Number of training samples'
_plot_curve(
axes=ax,
train_sizes=train_sizes,
train_scores=train_scores,
test_scores=test_scores,
xlabel=xlabel,
scoring=scoring
)
ax.set_title(pipeline_name(estimator))
return fig
def plot_learning_curve(est, x, y):
from sklearn.model_selection import learning_curve,KFold
training_set_size, train_scores, test_scores = learning_curve(
est, x, y, train_sizes=np.linspace(.1, 1, 20), cv=KFold(20, shuffle=True, random_state=1))
estimator_name = est.__class__.__name__
line = plt.plot(training_set_size, train_scores.mean(axis=1), '--',
label="training " + estimator_name)
plt.plot(training_set_size, test_scores.mean(axis=1), '-',
label="test " + estimator_name, c=line[0].get_color())
plt.xlabel('Training set size')
plt.ylabel('Score (R^2)')
plt.ylim(0, 1.1)
def test_learning_curve_unsupervised():
X, _ = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockImprovingEstimator(20)
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10))
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1),
np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1),
np.linspace(0.1, 1.0, 10))
def test_learning_curve_incremental_learning_not_possible():
X, y = make_classification(n_samples=2, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
# The mockup does not have partial_fit()
estimator = MockImprovingEstimator(1)
assert_raises(ValueError, learning_curve, estimator, X, y,
exploit_incremental_learning=True)
def test_learning_curve_incremental_learning():
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockIncrementalImprovingEstimator(20)
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=3, exploit_incremental_learning=True,
train_sizes=np.linspace(0.1, 1.0, 10))
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1),
np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1),
np.linspace(0.1, 1.0, 10))
def test_learning_curve_n_sample_range_out_of_bounds():
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockImprovingEstimator(20)
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
train_sizes=[0, 1])
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
train_sizes=[0.0, 1.0])
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
train_sizes=[0.1, 1.1])
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
train_sizes=[0, 20])
assert_raises(ValueError, learning_curve, estimator, X, y, cv=3,
train_sizes=[1, 21])
def test_learning_curve_remove_duplicate_sample_sizes():
X, y = make_classification(n_samples=3, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockImprovingEstimator(2)
train_sizes, _, _ = assert_warns(
RuntimeWarning, learning_curve, estimator, X, y, cv=3,
train_sizes=np.linspace(0.33, 1.0, 3))
assert_array_equal(train_sizes, [1, 2])
def test_learning_curve_with_boolean_indices():
X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
n_redundant=0, n_classes=2,
n_clusters_per_class=1, random_state=0)
estimator = MockImprovingEstimator(20)
cv = KFold(n_folds=3)
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10))
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1),
np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1),
np.linspace(0.1, 1.0, 10))
def _set_description(self, dfe):
importances = pd.Series(self.model.feature_importances_, index=dfe.get_features().columns).sort_values(ascending=False)
y = dfe.df[dfe.target]
X = dfe.df.drop(dfe.target, axis=1)
train_sizes, train_scores, test_scores = learning_curve(self.model, X, y, n_jobs=self.n_jobs)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
pic = ImageFile.create()
with pic.plot() as plt_fig:
plt, fig = plt_fig
fig.set_figwidth(12)
plt.subplot(121)
importances.plot(kind="bar")
ax2 = plt.subplot(122)
ax2.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,color="r")
ax2.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")
ax2.plot(train_sizes, train_scores_mean, "o-", color="r", label="????" if self.lang == "ja" else "Training score")
ax2.plot(train_sizes, test_scores_mean, 'o-', color="g", label="????" if self.lang == "ja" else "Cross-validation score")
ax2.set_xlabel("??????(??)" if self.lang == "ja" else "data records")
ax2.set_ylabel("??" if self.lang == "ja" else "accuracy")
ax2.set_ylim(0, 1)
ax2.legend(loc="best")
params = (self.score, self.model.__class__.__name__)
self.description = {
"ja": Description("???????{:.3f}??(?????:{})?????????????????????".format(*params), pic),
"en": Description("The model accuracy is {:.3f}(model is {}). The contributions of each features are here.".format(*params), pic)
}
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
"""
Generate a simple plot of the test and traning learning curve.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
title : string
Title for the chart.
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape (n_samples) or (n_samples, n_features), optional
Target relative to X for classification or regression;
None for unsupervised learning.
ylim : tuple, shape (ymin, ymax), optional
Defines minimum and maximum yvalues plotted.
cv : integer, cross-validation generator, optional
If an integer is passed, it is the number of folds (defaults to 3).
Specific cross-validation objects can be passed, see
sklearn.cross_validation module for the list of possible objects
n_jobs : integer, optional
Number of jobs to run in parallel (default 1).
"""
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.legend(loc="best")
return plt
def generate_plots(model, partition):
r"""Generate plots while running the pipeline.
Parameters
----------
model : alphapy.Model
The model object with plotting specifications.
partition : alphapy.Partition
Reference to the dataset.
Returns
-------
None : None
"""
logger.info('='*80)
logger.info("Generating Plots for partition: %s", datasets[partition])
# Extract model parameters
calibration_plot = model.specs['calibration_plot']
confusion_matrix = model.specs['confusion_matrix']
importances = model.specs['importances']
learning_curve = model.specs['learning_curve']
roc_curve = model.specs['roc_curve']
# Generate plots
if calibration_plot:
plot_calibration(model, partition)
if confusion_matrix:
plot_confusion_matrix(model, partition)
if roc_curve:
plot_roc_curve(model, partition)
if partition == Partition.train:
if learning_curve:
plot_learning_curve(model, partition)
if importances:
plot_importance(model, partition)
#
# Function get_plot_directory
#
def plot_learning_curve(estimator, X, y, train_sizes=np.linspace(.1, 1.0, 5),
cv=None, n_jobs=1, ax=None):
'''
Plot the learning curve for `estimator`.
Parameters
----------
estimator : sklearn.Estimator
X : array-like
y : array-like
train_sizes : array-like
list of floats between 0 and 1
cv : int
n_jobs : int
ax : matplotlib.axes
'''
# http://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html
if ax is None:
fig, ax = plt.subplots()
ax.set_xlabel("Training examples")
ax.set_ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes
)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1, color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.legend(loc="best")
return ax
power_prediction.py 文件源码
项目:Power-Consumption-Prediction
作者: YoungGod
项目源码
文件源码
阅读 28
收藏 0
点赞 0
评论 0
def plot_learning_curve(estimator, title, X, y,
ylim=None, cv=None, scoring=None,
n_jobs=1, train_sizes=np.linspace(0.1, 1.0, 5)):
"""
Generate a simple plot of the test and training learning curve
Parameters
----------
estimator: object type that implements the "fit" and "predict" methods.
title: string; title for the chart.
X: traning vector, shape (n_samples, n_features)
y: target, shape (n_samples,)
ylim: tuple, shape (ymin, ymax)
Defines minimum and maximum yvalues plotted.
cv: int, cross-validation generator or an iterable
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the dafault 3-fold cross-validation
- Interger, to specify the number of folds
- An object to be used as a cross-validation generator
"""
from sklearn.model_selection import learning_curve
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
plt.xlabel("Training examples")
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, n_jobs=n_jobs,
train_sizes=train_sizes, scoring=scoring)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color='r')
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1,
color='g')
plt.plot(train_sizes, train_scores_mean, 'o-', color='r',
label="Training score")
plt.plot(train_sizes, test_scores_mean, 'o-', color='g',
label="Cross-validation score")
plt.legend(loc="best")
return plt,train_sizes