python类median_absolute_error()的实例源码

kgrid_r0.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def cv_LinearRegression_It( xM, yV, n_splits = 5, scoring = 'median_absolute_error', N_it = 10, disp = False, ldisp = False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    for ni in range( N_it):
        cv_score_l = cv_LinearRegression( xM, yV, n_splits = n_splits, scoring = scoring, disp = disp)
        cv_score_le.extend( cv_score_l)

    o_d = {'mean': np.mean( cv_score_le),
           'std': np.std( cv_score_le),
           'list': cv_score_le}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format( scoring, o_d['mean'], o_d['std']))

    return o_d
kgrid_r0.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_It( xM, yV, n_splits = 5, scoring = 'median_absolute_error', N_it = 10, disp = False, ldisp = False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    ci_le = list()
    for ni in range( N_it):
        cv_score_l, ci_l = cv_LinearRegression_ci( xM, yV, n_splits = n_splits, scoring = scoring, disp = disp)
        cv_score_le.extend( cv_score_l)
        ci_le.extend( ci_l)

    o_d = {'mean': np.mean( cv_score_le),
           'std': np.std( cv_score_le),
           'list': cv_score_le,
           'ci': ci_le}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format( scoring, o_d['mean'], o_d['std']))

    return o_d
kgrid_r0.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_pred_It( xM, yV, n_splits = 5, scoring = 'median_absolute_error', N_it = 10, disp = False, ldisp = False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    ci_le = list()
    yVp_ltype_l = list() # yVp_ltype is list type of yVp not matrix type
    for ni in range( N_it):
        cv_score_l, ci_l, yVp_ltype = cv_LinearRegression_ci_pred( xM, yV, n_splits = n_splits, scoring = scoring, disp = disp)
        cv_score_le.extend( cv_score_l)
        ci_le.extend( ci_l)
        yVp_ltype_l.append( yVp_ltype)

    o_d = {'mean': np.mean( cv_score_le),
           'std': np.std( cv_score_le),
           'list': cv_score_le,
           'ci': ci_le,
           'yVp': yVp_ltype_l}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format( scoring, o_d['mean'], o_d['std']))

    return o_d
kgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_It( xM, yV, n_splits = 5, scoring = 'median_absolute_error', N_it = 10, disp = False, ldisp = False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    ci_le = list()
    for ni in range( N_it):
        cv_score_l, ci_l = cv_LinearRegression_ci( xM, yV, n_splits = n_splits, scoring = scoring, disp = disp)
        cv_score_le.extend( cv_score_l)
        ci_le.extend( ci_l)

    o_d = {'mean': np.mean( cv_score_le),
           'std': np.std( cv_score_le),
           'list': cv_score_le,
           'ci': ci_le}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format( scoring, o_d['mean'], o_d['std']))

    return o_d
kgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_pred_It( xM, yV, n_splits = 5, scoring = 'median_absolute_error', N_it = 10, disp = False, ldisp = False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    ci_le = list()
    yVp_ltype_l = list() # yVp_ltype is list type of yVp not matrix type
    for ni in range( N_it):
        cv_score_l, ci_l, yVp_ltype = cv_LinearRegression_ci_pred( xM, yV, n_splits = n_splits, scoring = scoring, disp = disp)
        cv_score_le.extend( cv_score_l)
        ci_le.extend( ci_l)
        yVp_ltype_l.append( yVp_ltype)

    o_d = {'mean': np.mean( cv_score_le),
           'std': np.std( cv_score_le),
           'list': cv_score_le,
           'ci': ci_le,
           'yVp': yVp_ltype_l}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format( scoring, o_d['mean'], o_d['std']))

    return o_d
jgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def cv_LinearRegression_It(xM, yV, n_folds=5, scoring='median_absolute_error', N_it=10, disp=False, ldisp=False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    for ni in range(N_it):
        cv_score_l = cv_LinearRegression(
            xM, yV, n_folds=n_folds, scoring=scoring, disp=disp)
        cv_score_le.extend(cv_score_l)

    o_d = {'mean': np.mean(cv_score_le),
           'std': np.std(cv_score_le),
           'list': cv_score_le}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format(scoring,
                                                         o_d['mean'], o_d['std']))

    return o_d
jgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_It(xM, yV, n_folds=5, scoring='median_absolute_error', N_it=10, disp=False, ldisp=False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    ci_le = list()
    for ni in range(N_it):
        cv_score_l, ci_l = cv_LinearRegression_ci(
            xM, yV, n_folds=n_folds, scoring=scoring, disp=disp)
        cv_score_le.extend(cv_score_l)
        ci_le.extend(ci_l)

    o_d = {'mean': np.mean(cv_score_le),
           'std': np.std(cv_score_le),
           'list': cv_score_le,
           'ci': ci_le}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format(scoring,
                                                         o_d['mean'], o_d['std']))

    return o_d
jgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def gs_Ridge(xM, yV, alphas_log=(1, -1, 9), n_folds=5, n_jobs=-1, scoring='r2'):
    """
    Parameters
    -------------
    scoring: mean_absolute_error, mean_squared_error, median_absolute_error, r2
    """
    print('If scoring is not r2 but error metric, output score is revered for scoring!')
    print(xM.shape, yV.shape)

    clf = linear_model.Ridge()
    #parmas = {'alpha': np.logspace(1, -1, 9)}
    parmas = {'alpha': np.logspace(*alphas_log)}
    kf_n_c = model_selection.KFold(n_splits=n_folds, shuffle=True)
    kf_n = kf_n_c.split(xM)
    gs = model_selection.GridSearchCV(
        clf, parmas, scoring=scoring, cv=kf_n, n_jobs=n_jobs)

    gs.fit(xM, yV)

    return gs
jgrid (james-90X3A's conflicted copy 2016-04-21).py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def cv_LinearRegression_It( xM, yV, n_folds = 5, scoring = 'median_absolute_error', N_it = 10, disp = False, ldisp = False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    for ni in range( N_it):
        cv_score_l = cv_LinearRegression( xM, yV, n_folds = n_folds, scoring = scoring, disp = disp)
        cv_score_le.extend( cv_score_l)

    o_d = {'mean': np.mean( cv_score_le),
           'std': np.std( cv_score_le),
           'list': cv_score_le}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format( scoring, o_d['mean'], o_d['std']))

    return o_d
jgrid (james-90X3A's conflicted copy 2016-04-21).py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_It( xM, yV, n_folds = 5, scoring = 'median_absolute_error', N_it = 10, disp = False, ldisp = False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    ci_le = list()
    for ni in range( N_it):
        cv_score_l, ci_l = cv_LinearRegression_ci( xM, yV, n_folds = n_folds, scoring = scoring, disp = disp)
        cv_score_le.extend( cv_score_l)
        ci_le.extend( ci_l)

    o_d = {'mean': np.mean( cv_score_le),
           'std': np.std( cv_score_le),
           'list': cv_score_le,
           'ci': ci_le}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format( scoring, o_d['mean'], o_d['std']))

    return o_d
jgrid (james-90X3A's conflicted copy 2016-04-21).py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_pred_It( xM, yV, n_folds = 5, scoring = 'median_absolute_error', N_it = 10, disp = False, ldisp = False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    ci_le = list()
    yVp_ltype_l = list() # yVp_ltype is list type of yVp not matrix type
    for ni in range( N_it):
        cv_score_l, ci_l, yVp_ltype = cv_LinearRegression_ci_pred( xM, yV, n_folds = n_folds, scoring = scoring, disp = disp)
        cv_score_le.extend( cv_score_l)
        ci_le.extend( ci_l)
        yVp_ltype_l.append( yVp_ltype)

    o_d = {'mean': np.mean( cv_score_le),
           'std': np.std( cv_score_le),
           'list': cv_score_le,
           'ci': ci_le,
           'yVp': yVp_ltype_l}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format( scoring, o_d['mean'], o_d['std']))

    return o_d
_jgrid_r0.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def cv_LinearRegression_It( xM, yV, n_folds = 5, scoring = 'median_absolute_error', N_it = 10, disp = False, ldisp = False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    for ni in range( N_it):
        cv_score_l = cv_LinearRegression( xM, yV, n_folds = n_folds, scoring = scoring, disp = disp)
        cv_score_le.extend( cv_score_l)

    o_d = {'mean': np.mean( cv_score_le),
           'std': np.std( cv_score_le),
           'list': cv_score_le}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format( scoring, o_d['mean'], o_d['std']))

    return o_d
_jgrid_r0.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_It( xM, yV, n_folds = 5, scoring = 'median_absolute_error', N_it = 10, disp = False, ldisp = False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    ci_le = list()
    for ni in range( N_it):
        cv_score_l, ci_l = cv_LinearRegression_ci( xM, yV, n_folds = n_folds, scoring = scoring, disp = disp)
        cv_score_le.extend( cv_score_l)
        ci_le.extend( ci_l)

    o_d = {'mean': np.mean( cv_score_le),
           'std': np.std( cv_score_le),
           'list': cv_score_le,
           'ci': ci_le}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format( scoring, o_d['mean'], o_d['std']))

    return o_d
_jgrid_r0.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_pred_It( xM, yV, n_folds = 5, scoring = 'median_absolute_error', N_it = 10, disp = False, ldisp = False):
    """
    N_it times iteration is performed for cross_validation in order to make further average effect. 
    The flag of 'disp' is truned off so each iteration will not shown.  
    """
    cv_score_le = list()
    ci_le = list()
    yVp_ltype_l = list() # yVp_ltype is list type of yVp not matrix type
    for ni in range( N_it):
        cv_score_l, ci_l, yVp_ltype = cv_LinearRegression_ci_pred( xM, yV, n_folds = n_folds, scoring = scoring, disp = disp)
        cv_score_le.extend( cv_score_l)
        ci_le.extend( ci_l)
        yVp_ltype_l.append( yVp_ltype)

    o_d = {'mean': np.mean( cv_score_le),
           'std': np.std( cv_score_le),
           'list': cv_score_le,
           'ci': ci_le,
           'yVp': yVp_ltype_l}

    if disp or ldisp:
        print('{0}: mean(+/-std) --> {1}(+/-{2})'.format( scoring, o_d['mean'], o_d['std']))

    return o_d
_jgrid_r0.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def gs_Ridge( xM, yV, alphas_log = (1, -1, 9), n_folds = 5, n_jobs = -1, scoring = 'r2'):
    """
    Parameters
    -------------
    scoring: mean_absolute_error, mean_squared_error, median_absolute_error, r2
    """
    print(xM.shape, yV.shape)

    clf = linear_model.Ridge()
    #parmas = {'alpha': np.logspace(1, -1, 9)}
    parmas = {'alpha': np.logspace( *alphas_log)}
    kf_n = cross_validation.KFold( xM.shape[0], n_folds=n_folds, shuffle=True)
    gs = grid_search.GridSearchCV( clf, parmas, scoring = scoring, cv = kf_n, n_jobs = n_jobs)

    gs.fit( xM, yV)

    return gs
pdl.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def estimate_accuracy(yEv, yEv_calc, disp = False):
    """
    It was originally located in jchem. However now it is allocated here
    since the functionality is more inline with jutil than jchem. 
    """

    r_sqr = metrics.r2_score( yEv, yEv_calc)
    RMSE = np.sqrt( metrics.mean_squared_error( yEv, yEv_calc))
    MAE = metrics.mean_absolute_error( yEv, yEv_calc)
    DAE = metrics.median_absolute_error( yEv, yEv_calc)

    if disp:
        print("r^2={0:.2e}, RMSE={1:.2e}, MAE={2:.2e}, DAE={3:.2e}".format( r_sqr, RMSE, MAE, DAE))

    return r_sqr, RMSE, MAE, DAE
kgrid_r0.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def cv_LinearRegression( xM, yV, n_splits = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=True)
    kf5 = kf5_c.split( xM)  
    cv_score_l = list()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l
kgrid_r0.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_pred( xM, yV, n_splits = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=True)
    kf5 = kf5_c.split( xM)  
    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored. 
        coef = np.array(clf.coef_).tolist()
        intercept = np.array(clf.intercept_).tolist()
        ci_l.append( (clf.coef_, clf.intercept_))
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l, ci_l, yVp.A1.tolist()
kgrid_r0.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_pred_full_Ridge( xM, yV, alpha, n_splits = 5, shuffle=True, disp = False):
    """
    Note - scoring is not used. I may used later. Not it is remained for compatibility purpose.
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    # print( 'alpha of Ridge is', alpha)
    clf = linear_model.Ridge( alpha)
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=shuffle)
    kf5 = kf5_c.split( xM)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored.        
        ci_l.append( (clf.coef_, clf.intercept_))
        y_a = np.array( yV[test])[:,0]
        yp_a = np.array( yVp_test)[:,0]
        cv_score_l.extend( np.abs(y_a - yp_a).tolist())

    return cv_score_l, ci_l, yVp.A1.tolist()
jutil.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def estimate_accuracy4(yEv, yEv_calc, disp = False):
    """
    It was originally located in jchem. However now it is allocated here
    since the functionality is more inline with jutil than jchem. 
    """

    r_sqr = metrics.r2_score( yEv, yEv_calc)
    RMSE = np.sqrt( metrics.mean_squared_error( yEv, yEv_calc))
    MAE = metrics.mean_absolute_error( yEv, yEv_calc)
    DAE = metrics.median_absolute_error( yEv, yEv_calc)

    if disp:
        print("r^2={0:.2e}, RMSE={1:.2e}, MAE={2:.2e}, DAE={3:.2e}".format( r_sqr, RMSE, MAE, DAE))

    return r_sqr, RMSE, MAE, DAE
jskflow.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def eval_score( model, X_test, y_test, string = "Test", graph = False):
    print()
    print(  "Evaluation of", string)
    print('--------')
    yP = model.predict(X_test)
    score_r2 = metrics.r2_score(y_test, yP)
    score_MedAE = metrics.median_absolute_error(y_test, yP)
    print('Accuracy')
    print('R2: {0:f}, MedAE: {1:f}'.format(score_r2, score_MedAE))
    print()

    if graph:
        kutil.regress_show4( y_test, yP)
kgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def cv_LinearRegression( xM, yV, n_splits = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=True)
    kf5 = kf5_c.split( xM)  
    cv_score_l = list()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l
kgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci( xM, yV, n_splits = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=True)
    kf5 = kf5_c.split( xM)  
    cv_score_l = list()
    ci_l = list()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])

        # Additionally, coef_ and intercept_ are stored. 
        ci_l.append( (clf.coef_, clf.intercept_))
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l, ci_l
kgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_pred( xM, yV, n_splits = 5, scoring = 'median_absolute_error', disp = False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=True)
    kf5 = kf5_c.split( xM)  
    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored. 
        coef = np.array(clf.coef_).tolist()
        intercept = np.array(clf.intercept_).tolist()
        ci_l.append( (clf.coef_, clf.intercept_))
        if scoring == 'median_absolute_error':
            cv_score_l.append( metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError( "{} scoring is not supported.".format( scoring))

    if disp: # Now only this flag is on, the output will be displayed. 
        print('{}: mean, std -->'.format( scoring), np.mean( cv_score_l), np.std( cv_score_l))

    return cv_score_l, ci_l, yVp.A1.tolist()
kgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_pred_full_Ridge( xM, yV, alpha, n_splits = 5, shuffle=True, disp = False):
    """
    Note - scoring is not used. I may used later. Not it is remained for compatibility purpose.
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    # print( 'alpha of Ridge is', alpha)
    clf = linear_model.Ridge( alpha)
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=shuffle)
    kf5 = kf5_c.split( xM)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored.        
        ci_l.append( (clf.coef_, clf.intercept_))
        y_a = np.array( yV[test])[:,0]
        yp_a = np.array( yVp_test)[:,0]
        cv_score_l.extend( np.abs(y_a - yp_a).tolist())

    return cv_score_l, ci_l, yVp.A1.tolist()
kgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_pred_full( xM, yV, n_splits = 5, shuffle=True, disp = False):
    """
    Note - scoring is not used. I may used later. Not it is remained for compatibility purpose.
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """  

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold( n_splits=n_splits, shuffle=shuffle)
    kf5 = kf5_c.split( xM)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy() 
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a vector
        clf.fit( xM[train,:], yV[train])

        yVp_test = clf.predict( xM[test,:])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored.        
        ci_l.append( (clf.coef_, clf.intercept_))
        y_a = np.array( yV[test])[:,0]
        yp_a = np.array( yVp_test)[:,0]
        cv_score_l.extend( np.abs(y_a - yp_a).tolist())

    return cv_score_l, ci_l, yVp.A1.tolist()
kutil.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def estimate_accuracy4(yEv, yEv_calc, disp = False):
    r_sqr = metrics.r2_score( yEv, yEv_calc)
    RMSE = np.sqrt( metrics.mean_squared_error( yEv, yEv_calc))
    MAE = metrics.mean_absolute_error( yEv, yEv_calc)
    DAE = metrics.median_absolute_error( yEv, yEv_calc)

    if disp:
        print("r^2={0:.2e}, RMSE={1:.2e}, MAE={2:.2e}, DAE={3:.2e}".format( r_sqr, RMSE, MAE, DAE))

    return r_sqr, RMSE, MAE, DAE
jgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci(xM, yV, n_folds=5, scoring='median_absolute_error', disp=False):
    """
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold(n_splits=n_folds, shuffle=True)
    kf5 = kf5_c.split(xM)

    cv_score_l = list()
    ci_l = list()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a
        # vector
        clf.fit(xM[train, :], yV[train])

        yVp_test = clf.predict(xM[test, :])

        # Additionally, coef_ and intercept_ are stored.
        ci_l.append((clf.coef_, clf.intercept_))
        if scoring == 'median_absolute_error':
            cv_score_l.append(
                metrics.median_absolute_error(yV[test], yVp_test))
        else:
            raise ValueError("{} scoring is not supported.".format(scoring))

    if disp:  # Now only this flag is on, the output will be displayed.
        print('{}: mean, std -->'.format(scoring),
              np.mean(cv_score_l), np.std(cv_score_l))

    return cv_score_l, ci_l
jgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_pred_full_Ridge(xM, yV, alpha, n_folds=5, shuffle=True, disp=False):
    """
    Note - scoring is not used. I may used later. Not it is remained for compatibility purpose.
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """

    if disp:
        print(xM.shape, yV.shape)

    # print( 'alpha of Ridge is', alpha)
    clf = linear_model.Ridge(alpha)
    kf5_c = model_selection.KFold(n_splits=n_folds, shuffle=shuffle)
    kf5 = kf5_c.split(xM)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a
        # vector
        clf.fit(xM[train, :], yV[train])

        yVp_test = clf.predict(xM[test, :])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored.
        ci_l.append((clf.coef_, clf.intercept_))
        y_a = np.array(yV[test])[:, 0]
        yp_a = np.array(yVp_test)[:, 0]
        cv_score_l.extend(np.abs(y_a - yp_a).tolist())

    return cv_score_l, ci_l, yVp.A1.tolist()
jgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def cv_LinearRegression_ci_pred_full(xM, yV, n_folds=5, shuffle=True, disp=False):
    """
    Note - scoring is not used. I may used later. Not it is remained for compatibility purpose.
    metrics.explained_variance_score(y_true, y_pred)    Explained variance regression score function
    metrics.mean_absolute_error(y_true, y_pred) Mean absolute error regression loss
    metrics.mean_squared_error(y_true, y_pred[, ...])   Mean squared error regression loss
    metrics.median_absolute_error(y_true, y_pred)   Median absolute error regression loss
    metrics.r2_score(y_true, y_pred[, ...]) R^2 (coefficient of determination) regression score function.
    """

    if disp:
        print(xM.shape, yV.shape)

    clf = linear_model.LinearRegression()
    kf5_c = model_selection.KFold(n_splits=n_folds, shuffle=shuffle)
    kf5 = kf5_c.split(xM)

    cv_score_l = list()
    ci_l = list()
    yVp = yV.copy()
    for train, test in kf5:
        # clf.fit( xM[train,:], yV[train,:])
        # yV is vector but not a metrix here. Hence, it should be treated as a
        # vector
        clf.fit(xM[train, :], yV[train])

        yVp_test = clf.predict(xM[test, :])
        yVp[test] = yVp_test

        # Additionally, coef_ and intercept_ are stored.
        ci_l.append((clf.coef_, clf.intercept_))
        y_a = np.array(yV[test])[:, 0]
        yp_a = np.array(yVp_test)[:, 0]
        cv_score_l.extend(np.abs(y_a - yp_a).tolist())

    return cv_score_l, ci_l, yVp.A1.tolist()


问题


面经


文章

微信
公众号

扫码关注公众号