def test_birch_predict():
# Test the predict method predicts the nearest centroid.
rng = np.random.RandomState(0)
X = generate_clustered_data(n_clusters=3, n_features=3,
n_samples_per_cluster=10)
# n_samples * n_samples_per_cluster
shuffle_indices = np.arange(30)
rng.shuffle(shuffle_indices)
X_shuffle = X[shuffle_indices, :]
brc = Birch(n_clusters=4, threshold=1.)
brc.fit(X_shuffle)
centroids = brc.subcluster_centers_
assert_array_equal(brc.labels_, brc.predict(X_shuffle))
nearest_centroid = pairwise_distances_argmin(X_shuffle, centroids)
assert_almost_equal(v_measure_score(nearest_centroid, brc.labels_), 1.0)
python类v_measure_score()的实例源码
def test_birch_predict():
# Test the predict method predicts the nearest centroid.
rng = np.random.RandomState(0)
X = generate_clustered_data(n_clusters=3, n_features=3,
n_samples_per_cluster=10)
# n_samples * n_samples_per_cluster
shuffle_indices = np.arange(30)
rng.shuffle(shuffle_indices)
X_shuffle = X[shuffle_indices, :]
brc = Birch(n_clusters=4, threshold=1.)
brc.fit(X_shuffle)
centroids = brc.subcluster_centers_
assert_array_equal(brc.labels_, brc.predict(X_shuffle))
nearest_centroid = pairwise_distances_argmin(X_shuffle, centroids)
assert_almost_equal(v_measure_score(nearest_centroid, brc.labels_), 1.0)
def bench_k_means(estimator, name, data):
t0 = time()
estimator.fit(data)
print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f'
% (name, (time() - t0), estimator.inertia_,
metrics.homogeneity_score(labels, estimator.labels_),
metrics.completeness_score(labels, estimator.labels_),
metrics.v_measure_score(labels, estimator.labels_),
metrics.adjusted_rand_score(labels, estimator.labels_),
metrics.adjusted_mutual_info_score(labels, estimator.labels_),
metrics.silhouette_score(data, estimator.labels_,
metric='euclidean',
sample_size=sample_size)))
def bench_k_means(labels, labels_, name, data):
print('%20s %.3f %.3f %.3f %.3f %.3f'
% ( name,
metrics.homogeneity_score(labels, labels_),
metrics.completeness_score(labels, labels_),
metrics.v_measure_score(labels, labels_),
metrics.adjusted_rand_score(labels, labels_),
metrics.adjusted_mutual_info_score(labels, labels_)))
nbins=len(set(labels_))
vals,bins=np.histogram(labels_,bins=nbins)
print 20*' ','hist-min,max',np.min(vals),np.max(vals)
def test_dbscan_noisy_utils():
from freediscovery.cluster.utils import (_dbscan_noisy2unique,
_dbscan_unique2noisy)
from sklearn.metrics import v_measure_score
x_ref = np.array([-1, 0, -1, 1, 1, -1, 0])
y_ref = np.array([2, 0, 3, 1, 1, 4, 0])
y = _dbscan_noisy2unique(x_ref)
assert v_measure_score(y, y_ref) == 1
# check inverse transform
x = _dbscan_unique2noisy(y_ref)
assert v_measure_score(x, x_ref) == 1
def test_binary_linkage2clusters():
from freediscovery.cluster.utils import _binary_linkage2clusters
from sklearn.metrics import v_measure_score
n_samples = 10
linkage = np.array([[1, 2],
[2, 3],
[5, 7],
[6, 9]])
cluster_id = _binary_linkage2clusters(linkage, n_samples)
cluster_id_ref = np.array([0, 1, 1, 1, 2, 3, 4, 3, 5, 4])
assert cluster_id.shape == cluster_id_ref.shape
# i.e. same clusters
assert v_measure_score(cluster_id, cluster_id_ref) == 1.0
def analyze_k_means(estimator, name, data):
t0 = time()
estimator.fit(data)
print(" %9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f"%( name, time()-t0, estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size = samples) ))
def performance(self, group_labels=None):
"""
Computes performance metrics for clustering algorithm
Parameters
----------
group_labels : (optional) ndarray(shape=nsubjects)
Labels for subject groups
"""
n_samples = len(self.algorithm.labels_)
if group_labels is None:
truelab = np.zeros(n_samples)
unique_labels = np.unique(group_labels)
self.clusters["true_int"] = truelab
else:
truelab = np.zeros(n_samples)
unique_labels = np.unique(group_labels)
for i, label_i in enumerate(unique_labels):
truelab[group_labels == label_i] = i
self.clusters["true"] = group_labels
self.clusters["true_int"] = truelab
lab = self.algorithm.labels_
self.results["homogeneity"] = homogeneity_score(truelab, lab)
self.results["completeness"] = completeness_score(truelab, lab)
self.results["v_measure"] = v_measure_score(truelab, lab)
self.results["adj_rand"] = adjusted_rand_score(truelab, lab)
self.results["adj_MI"] = adjusted_mutual_info_score(truelab, lab)
def score_clustering_solution(tgt, sol, gold, tempdir='eval/semeval_unsup_eval/keys', use_sklearn_vmeas=False, semeval_root='eval/semeval_unsup_eval'):
'''
Score clustering solution sol against gold classes.
Both the sol and gold are passed as dictionaries with integer keys (value
is unimportant) and sets of paraphrases in each cluster as values.
Returns (fscore, precision, recall, vmeasure, homogeneity, completeness)
:param tgt: str (target word you're clustering)
:param sol: dict {int -> set}
:param gold: dict {int -> set}
:param tempdir: stra (temporary directory to store scoring key files)
:param use_sklearn_vmeas: boolean (setting true will use SKLearn version of V-Measure instead of semeval script)
:param semeval_root: str (path to semeval root directory)
:return: FScore, precision, recall, V-Measure, homogeneity, completeness (all floats)
'''
## Verify set of paraphrases in gold and sol are the same
assert set.union(*sol.values()) == set.union(*gold.values())
## Write temporary key files
tempsolkey = os.path.join(tempdir, 'sol_temp.key')
tempgoldkey = os.path.join(tempdir, 'gld_temp.key')
write_key(tempsolkey, tgt, sol)
write_key(tempgoldkey, tgt, gold)
## Call scoring script
tempscorefile = os.path.join(tempdir, 'scorestemp')
tempscores = open(tempscorefile, 'w')
score_semeval(tempsolkey, tempgoldkey, tempscores, semeval_root=semeval_root)
tempscores.close()
fscore, prec, rec, vmeas, hom, comp = read_scoring_soln(tempscorefile, tgt)
## Delete temporary key files
# os.remove(tempsolkey)
# os.remove(tempgoldkey)
# os.remove(tempscorefile)
if use_sklearn_vmeas:
goldlab, sollab, words = get_labels(gold, sol)
vmeas = metrics.v_measure_score(goldlab, sollab)
hom = metrics.homogeneity_score(goldlab, sollab)
comp = metrics.completeness_score(goldlab, sollab)
return fscore, prec, rec, vmeas, hom, comp
def evaluate(path):
system = systems[path]
measure, scores, clusters_gold, clusters_system = 0., OrderedDict(), [], []
for lemma in lemmas:
instances = sorted(gold[lemma].keys())
senses_gold = {sid: i for i, sid in enumerate(sorted(set(gold[lemma].values())))}
senses_system = {sid: i for i, sid in enumerate(sorted(set(system[lemma].values())))}
clusters_gold = [senses_gold[gold[lemma][instance]] for instance in instances]
clusters_system = [senses_system[system[lemma][instance]] for instance in instances]
if 'vmeasure' == args.measure:
if 'instances' == args.average:
measure += v_measure_score(clusters_gold, clusters_system) * len(instances) / total
else:
measure += v_measure_score(clusters_gold, clusters_system)
scores[lemma] = (
homogeneity_score(clusters_gold, clusters_system),
completeness_score(clusters_gold, clusters_system),
v_measure_score(clusters_gold, clusters_system)
)
else:
scores[lemma] = adjusted_rand_score(clusters_gold, clusters_system)
if 'instances' == args.average:
measure += scores[lemma] * len(instances) / total
else:
measure += scores[lemma]
if 'words' == args.average:
measure /= len(lemmas)
return measure, scores
def bench_k_means(estimator, name, data):
t0 = time()
estimator.fit(data)
print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f'
% (name, (time() - t0), estimator.inertia_,
metrics.homogeneity_score(labels, estimator.labels_),
metrics.completeness_score(labels, estimator.labels_),
metrics.v_measure_score(labels, estimator.labels_),
metrics.adjusted_rand_score(labels, estimator.labels_),
metrics.adjusted_mutual_info_score(labels, estimator.labels_),
metrics.silhouette_score(data, estimator.labels_,
metric='euclidean',
sample_size=sample_size)))
def test_birch_hierarchy():
X, y = make_blobs(random_state=40)
brc = Birch(n_clusters=None, branching_factor=5,
compute_sample_indices=True)
brc.fit(X)
# make sure that leave nodes contain all the samples
n_leaves = 1
sample_id = []
current_leaf = brc.dummy_leaf_.next_leaf_
while current_leaf:
subclusters = current_leaf.subclusters_
for sc in subclusters:
assert sc.n_samples_ == len(sc.samples_id_)
sample_id += sc.samples_id_
current_leaf = current_leaf.next_leaf_
n_leaves += 1
assert_array_equal(np.sort(sample_id), np.arange(X.shape[0]))
# Verify that the resulting hierarchical tree is deeper than 1 level
# (i.e. subclusters of the root node are nor tree leaves )
assert len(brc.root_.subclusters_) < n_leaves
# Make sure that subclusters of the root_ node contain all the samples
sample_id = []
for sc in brc.root_.subclusters_:
sample_id += sc.samples_id_
assert sc.n_samples_ == len(sc.samples_id_)
assert_array_equal(np.sort(sample_id), np.arange(X.shape[0]))
# Pick a sample at random and make sure that reported samples_id_
# matches with the subcluster the sample is closest to
document_id = 45
document_in_subcluster = []
distance_to_centroid = []
for sc in brc.root_.subclusters_:
centroid = X[sc.samples_id_, :].mean(axis=0)
distance_to_centroid.append(((X[[document_id]] - centroid)**2).sum())
document_in_subcluster.append(document_id in sc.samples_id_)
assert np.argmin(distance_to_centroid) == \
np.nonzero(document_in_subcluster)[0][0]
# Make sure that we can recompute labels from tree leaves
labels2 = np.zeros(X.shape[0], dtype=int)
cluster_id = 0
for current_leaf in brc._get_leaves():
subclusters = current_leaf.subclusters_
for sc in subclusters:
labels2[list(sc.samples_id_)] = cluster_id
cluster_id += 1
assert np.unique(brc.labels_).shape == np.unique(labels2).shape
# The two methods yield approximately equal labels
assert v_measure_score(brc.labels_, labels2) > 0.95
def compute_affinity_propagation(preference_, X):
# DATA FILLING
#text = io.Input.local_read_text_file(inputFilePath)
#input_array = text.split('\n')
centers = [[1, 1], [-1, -1], [1, -1]]
n_samples = 300
#Make Blobs used for generating of labels_true array
if (X == None):
X, labels_true = make_blobs(n_samples = n_samples, centers=centers, cluster_std=1, random_state=0)
print("Data is none!!!")
print("Generating " + str(n_samples) + " samples")
else :
data, labels_true = make_blobs(n_samples=len(X), centers=centers, cluster_std=1, random_state=0)
#slist = list()
#for line in X:
# slist.append(line)
#io.Output.write_array_to_txt_file("clustering\\Affinity_Propagation\\input_data1.txt", slist)
#float_array = []
#for line in input_array:
# float_line = [float(i) for i in line.split(' ')]
# float_array.append(float_line)
#X = array(float_array)
af = AffinityPropagation(preference=preference_).fit(X)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_
n_clusters_ = len(cluster_centers_indices)
print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels))
# print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels, metric='sqeuclidean'))
print("Fowlkes Mallows Score: %0.3f" % metrics.fowlkes_mallows_score(labels_true, labels))
plt.close('all')
plt.figure(1)
plt.clf()
colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
for k, col in zip(range(n_clusters_), colors):
class_members = labels == k
cluster_center = X[cluster_centers_indices[k]]
plt.plot(X[class_members, 0], X[class_members, 1], col + '.')
plt.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14)
for x in X[class_members]:
plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
def compare_with_children(
self, idea_id, post_ids, post_clusters, remainder, labels):
# Compare to children classification
compare_with_ideas = None
all_idea_scores = []
ideas_of_post = defaultdict(list)
children_remainder = set(post_ids)
children_ids = self.idea_children[idea_id]
if len(children_ids):
posts_of_children = {
child_id: self.get_posts_of_idea(child_id)
for child_id in children_ids}
for idea_id, c_post_ids in posts_of_children.items():
for post_id in c_post_ids:
ideas_of_post[post_id].append(idea_id)
children_remainder -= set(c_post_ids)
for post_id in children_remainder:
ideas_of_post[post_id] = [idea_id]
# if many ideas to a post, choose one with the most ideas in same cluster.
# A bit arbitrary but I need a single idea.
for cluster in chain(post_clusters, (remainder,)):
idea_score = defaultdict(int)
all_idea_scores.append(idea_score)
for post_id in cluster:
for idea_id in ideas_of_post[post_id]:
idea_score[idea_id] += 1
for post_id in cluster:
if len(ideas_of_post[post_id]) > 1:
scores = [(idea_score[idea_id], idea_id)
for idea_id in ideas_of_post[post_id]]
scores.sort(reverse=True)
ideas_of_post[post_id] = [score[1] for score in scores]
# index_by_post_id = {v: k for (k, v) in post_id_by_index.iteritems()}
idea_of_index = [ideas_of_post[post_id][0] for post_id in post_ids]
compare_with_ideas = {
"Homogeneity": metrics.homogeneity_score(idea_of_index, labels),
"Completeness": metrics.completeness_score(idea_of_index, labels),
"V-measure": metrics.v_measure_score(idea_of_index, labels),
"Adjusted Rand Index": metrics.adjusted_rand_score(
idea_of_index, labels),
"Adjusted Mutual Information": metrics.adjusted_mutual_info_score(
idea_of_index, labels)}
else:
for post_id in children_remainder:
ideas_of_post[post_id] = [idea_id]
for cluster in chain(post_clusters, (remainder,)):
all_idea_scores.append({idea_id: len(cluster)})
return (compare_with_ideas, all_idea_scores, ideas_of_post,
children_remainder)