python类mean_squared_error()的实例源码

knn_scikit.py 文件源码 项目:Photometric-Redshifts 作者: martiansideofthemoon 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def k_vs_rms(START_K, END_K, STEP_K, training_data, labels, test_data, expected_labels, weights='distance'):
    num_points = int((END_K - START_K) / STEP_K) + 1
    points = np.zeros([num_points, 2])
    index = -1
    for K in range(START_K, END_K, STEP_K):
        print "k = " + str(K)
        index += 1
        output = knn_regression(K, training_data, labels, test_data, weights)
        v = np.column_stack((output, expected_labels))
        v = v[~np.isnan(v[:,0]),:]
        RMSE = mean_squared_error(v[:,0], v[:,1])**0.5
        points[index,0] = K
        points[index,1] = RMSE
    if points[-1,0] == 0 and points[-1,1] == 0:
        points = points[:-1,:]
    return points

# Test parameters
stats.py 文件源码 项目:EarlyWarning 作者: wjlei1990 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def train(df_train, df_test):
    train_x, train_y = extract_feature_and_y(df_train)
    print("train x and y shape: {0} and {1}".format(
        train_x.shape, train_y.shape))
    test_x, test_y = extract_feature_and_y(df_test)
    print("test x and y shape: {0} and {1}".format(
        test_x.shape, test_y.shape))

    # print("train x nan:", np.isfinite(train_x).any())
    # print("train y nan:", np.isfinite(train_y).any())
    # print("test x nan:", np.isfinite(test_x).any())

    info = train_ridge_linear_model(train_x, train_y, test_x) 
    #info = train_lasso_model(train_x, train_y, test_x) 
    #info = train_EN_model(train_x, train_y, test_x) 

    _mse = mean_squared_error(test_y, info["y"])
    _std = np.std(test_y - info["y"])
    print("MSE on test data: %f" % _mse)
    print("std of error on test data: %f" % _std)

    plot_y(train_y, info["train_y"], test_y, info["y"])
stocks.py 文件源码 项目:lstm_stock_prediction 作者: gregorymfoster 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def train(X_train, y_train):
    model = Sequential()
    model.add(LSTM(
        lstm_neurons,
        batch_input_shape=(batch_size, X_train.shape[1], X_train.shape[2]),
        stateful=True))
    model.add(Dense(1))
    model.compile(loss='mean_squared_error', optimizer='adam')
    for i in range(epochs):
        print 'batch', i+1
        model.fit(
            X_train,
            y_train,
            epochs=1,
            batch_size=batch_size,
            verbose=2,
            shuffle=False,
            validation_split=0.33)
        model.reset_states()
    return model
code.py 文件源码 项目:The_Ultimate_Student_Hunt 作者: analyticsvidhya 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def run_model(model,dtrain,predictor_var,target,scoring_method='mean_squared_error'):
    cv_method = KFold(len(dtrain),5)
    cv_scores = cross_val_score(model,dtrain[predictor_var],dtrain[target],cv=cv_method,scoring=scoring_method)
    #print cv_scores, np.mean(cv_scores), np.sqrt((-1)*np.mean(cv_scores))

    dtrain_for_val = dtrain[dtrain['Year']<2000]
    dtest_for_val = dtrain[dtrain['Year']>1999]
    #cv_method = KFold(len(dtrain_for_val),5)
    #cv_scores_2 = cross_val_score(model,dtrain_for_val[predictor_var],dtrain_for_val[target],cv=cv_method,scoring=scoring_method)
    #print cv_scores_2, np.mean(cv_scores_2)

    dtrain_for_val_ini = dtrain_for_val[predictor_var]
    dtest_for_val_ini = dtest_for_val[predictor_var]
    model.fit(dtrain_for_val_ini,dtrain_for_val[target])
    pred_for_val = model.predict(dtest_for_val_ini)

    #print math.sqrt(mean_squared_error(dtest_for_val['Footfall'],pred_for_val))
arima.py 文件源码 项目:machine_deeplearning_workbench 作者: chandupydev 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def arima(series, durations, order):
    X = series.values
    size = int(len(X) * 0.99)
    train, test = X[0:size], X[size:len(X)]
    history = [x for x in train]
    predictions = list()
    for t in range(len(test)):
        model = ARIMA(history, order=(5,1,0))
        model_fit = model.fit(disp=0)
        output = model_fit.forecast()
        yhat = output[0]
        predictions.append(yhat)
        obs = test[t]
        history.append(obs)
        print('predicted=%f, expected=%f' % (yhat, obs))
    error = mean_squared_error(test, predictions)
    print('Test MSE: %.3f' % error)
    return predictions 

# plot
spatial_analysis.py 文件源码 项目:Waskom_PNAS_2017 作者: WagnerLabPapers 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def prediction_curve(dmat, vals, steps, radius):
    """Return MSE from predicting values from neighbors at radial steps."""
    # Set null distances (greater than some threshold) to 0.
    # Not in general a great idea, but fine here because we don't
    # do anything with identity edges, and sums will be faster
    # if we don't have to worry about nans
    dmat = np.nan_to_num(dmat)

    error_vals = []
    for step in steps:
        neighbors = (np.abs(dmat - step) < radius).astype(np.float)
        neighbors /= neighbors.sum(axis=1, keepdims=True)
        predicted = neighbors.dot(vals)
        m = ~np.isnan(predicted)
        error_vals.append(mean_squared_error(vals[m], predicted[m]))
    return np.array(error_vals)
stable_feature_ranking.py 文件源码 项目:pub 作者: drcannady 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _raw_rank(self, x, y, network):
        impt = np.zeros(x.shape[1])

        for i in range(x.shape[1]):
            hold = np.array(x[:, i])
            np.random.shuffle(x[:, i])

            # Handle both TensorFlow and SK-Learn models.
            if 'tensorflow' in str(type(network)).lower():
                pred = list(network.predict(x, as_iterable=True))
            else:
                pred = network.predict(x)

            rmse = metrics.mean_squared_error(y, pred)
            impt[i] = rmse
            x[:, i] = hold

        return impt
score_dataset.py 文件源码 项目:snape 作者: mbernico 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def score_regression(y, y_hat, report=True):
    """
    Create regression score
    :param y:
    :param y_hat:
    :return:
    """
    r2 = r2_score(y, y_hat)
    rmse = sqrt(mean_squared_error(y, y_hat))
    mae = mean_absolute_error(y, y_hat)

    report_string = "---Regression Score--- \n"
    report_string += "R2 = " + str(r2) + "\n"
    report_string += "RMSE = " + str(rmse) + "\n"
    report_string += "MAE = " + str(mae) + "\n"

    if report:
        print(report_string)

    return mae, report_string
codes.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def _cross_val_score_loo_r0( lm, X, y):
    """
    mean_square_error metric is used from sklearn.metric.

    Return 
    --------
    The mean squared error values are returned. 
    """

    if len( y.shape) == 1:
        y = np.array( [y]).T

    kf = cross_validation.LeaveOneOut( y.shape[0])
    score_l = list()
    for tr, te in kf:
        lm.fit( X[tr,:], y[tr,:])
        yp = lm.predict( X[te, :])
        score_l.append( metrics.mean_squared_error( y[te,:], yp))

    return score_l
jgrid.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def gs_Ridge(xM, yV, alphas_log=(1, -1, 9), n_folds=5, n_jobs=-1, scoring='r2'):
    """
    Parameters
    -------------
    scoring: mean_absolute_error, mean_squared_error, median_absolute_error, r2
    """
    print('If scoring is not r2 but error metric, output score is revered for scoring!')
    print(xM.shape, yV.shape)

    clf = linear_model.Ridge()
    #parmas = {'alpha': np.logspace(1, -1, 9)}
    parmas = {'alpha': np.logspace(*alphas_log)}
    kf_n_c = model_selection.KFold(n_splits=n_folds, shuffle=True)
    kf_n = kf_n_c.split(xM)
    gs = model_selection.GridSearchCV(
        clf, parmas, scoring=scoring, cv=kf_n, n_jobs=n_jobs)

    gs.fit(xM, yV)

    return gs
_jgrid_r0.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def gs_Ridge( xM, yV, alphas_log = (1, -1, 9), n_folds = 5, n_jobs = -1, scoring = 'r2'):
    """
    Parameters
    -------------
    scoring: mean_absolute_error, mean_squared_error, median_absolute_error, r2
    """
    print(xM.shape, yV.shape)

    clf = linear_model.Ridge()
    #parmas = {'alpha': np.logspace(1, -1, 9)}
    parmas = {'alpha': np.logspace( *alphas_log)}
    kf_n = cross_validation.KFold( xM.shape[0], n_folds=n_folds, shuffle=True)
    gs = grid_search.GridSearchCV( clf, parmas, scoring = scoring, cv = kf_n, n_jobs = n_jobs)

    gs.fit( xM, yV)

    return gs
test_analyze.py 文件源码 项目:analyzefit 作者: wsmorgan 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_Validate():
    """Test that Validate function works correctly"""

    accuracy = an.validate(testing=True)

    val = mean_squared_error(y, slr.predict(X))

    assert np.allclose(accuracy,val)

    accuracy = an.validate(testing=True, X=X, y=y, metric=mean_squared_error)

    assert np.allclose(accuracy,val)

    accuracy = an.validate(testing=True, metric=[mean_squared_error, r2_score])
    val = [mean_squared_error(y, slr.predict(X)), r2_score(y, slr.predict(X))]

    assert np.allclose(accuracy,val)

    with pytest.raises(ValueError):
        an.validate(X=[1,2,3])
base.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def eval_pred( y_true, y_pred, eval_type):
    if eval_type == 'logloss':#eval_type??????
        loss = ll( y_true, y_pred )
        print "logloss: ", loss
        return loss            

    elif eval_type == 'auc':
        loss = AUC( y_true, y_pred )
        print "AUC: ", loss
        return loss             

    elif eval_type == 'rmse':
        loss = np.sqrt(mean_squared_error(y_true, y_pred))
        print "rmse: ", loss
        return loss




######### BaseModel Class #########
policy_net_script.py 文件源码 项目:WaNN 作者: TeoZosa 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def K_FoldValidation(estimator, XMatrix, yVector, numFolds):
    numTrainingExamples = len(XMatrix)
    K = numFolds
    if K < 2:
        print("Error, K must be greater than or equal to 2")
        exit(-10)
    elif K > numTrainingExamples:
        print("Error, K must be less than or equal to the number of training examples")
        exit(-11)
    K_folds = model_selection.KFold(numTrainingExamples, K)

    for k, (train_index, test_index) in enumerate(K_folds):
        X_train, X_test = XMatrix[train_index], XMatrix[test_index]
        y_train, y_test = yVector[train_index], yVector[test_index]
        # Fit
        estimator.fit(X_train, y_train, logdir='')

        # Predict and score
        score = metrics.mean_squared_error(estimator.predict(X_test), y_test)
        print('Iteration {0:f} MSE: {1:f}'.format(k+1, score))
base_tests.py 文件源码 项目:orange3-recommendation 作者: biolab 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_input_data_continuous(self, learner, filename):
        # Load data
        data = Orange.data.Table(filename)

        # Train recommender
        recommender = learner(data)

        print(str(recommender) + ' trained')

        # Compute predictions
        y_pred = recommender(data)

        # Compute RMSE
        rmse = math.sqrt(mean_squared_error(data.Y, y_pred))
        print('-> RMSE (input data; continuous): %.3f' % rmse)

        # Check correctness
        self.assertGreaterEqual(rmse, 0)
base_tests.py 文件源码 项目:orange3-recommendation 作者: biolab 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_input_data_discrete(self, learner, filename):
        # Load data
        data = Orange.data.Table(filename)

        # Train recommender
        recommender = learner(data)
        print(str(recommender) + ' trained')

        # Compute predictions
        y_pred = recommender(data)

        # Compute RMSE
        rmse = math.sqrt(mean_squared_error(data.Y, y_pred))
        print('-> RMSE (input data; discrete): %.3f' % rmse)

        # Check correctness
        self.assertGreaterEqual(rmse, 0)
gradient_boosting.py 文件源码 项目:HousePricePredictionKaggle 作者: Nuwantha 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def mean_squared_error_(ground_truth, predictions):
    return mean_squared_error(ground_truth, predictions) ** 0.5
RandomForest.py 文件源码 项目:HousePricePredictionKaggle 作者: Nuwantha 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def mean_squared_error_(ground_truth, predictions):
    return mean_squared_error(ground_truth, predictions) ** 0.5
ensemble_stacking.py 文件源码 项目:HousePricePredictionKaggle 作者: Nuwantha 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def mean_squared_error_(ground_truth, predictions):
    return mean_squared_error(ground_truth, predictions) ** 0.5
common_defs.py 文件源码 项目:hyperband 作者: zygmuntz 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def train_and_eval_sklearn_regressor( clf, data ):

    x_train = data['x_train']
    y_train = data['y_train']

    x_test = data['x_test']
    y_test = data['y_test'] 

    clf.fit( x_train, y_train ) 
    p = clf.predict( x_train )

    mse = MSE( y_train, p )
    rmse = sqrt( mse )
    mae = MAE( y_train, p )


    print "\n# training | RMSE: {:.4f}, MAE: {:.4f}".format( rmse, mae )

    #

    p = clf.predict( x_test )

    mse = MSE( y_test, p )
    rmse = sqrt( mse )
    mae = MAE( y_test, p )

    print "# testing  | RMSE: {:.4f}, MAE: {:.4f}".format( rmse, mae )  

    return { 'loss': rmse, 'rmse': rmse, 'mae': mae }


问题


面经


文章

微信
公众号

扫码关注公众号