def getModels():
result = []
result.append("LinearRegression")
result.append("BayesianRidge")
result.append("ARDRegression")
result.append("ElasticNet")
result.append("HuberRegressor")
result.append("Lasso")
result.append("LassoLars")
result.append("Rigid")
result.append("SGDRegressor")
result.append("SVR")
result.append("MLPClassifier")
result.append("KNeighborsClassifier")
result.append("SVC")
result.append("GaussianProcessClassifier")
result.append("DecisionTreeClassifier")
result.append("RandomForestClassifier")
result.append("AdaBoostClassifier")
result.append("GaussianNB")
result.append("LogisticRegression")
result.append("QuadraticDiscriminantAnalysis")
return result
python类HuberRegressor()的实例源码
def getSKLearnModel(modelName):
if modelName == 'LinearRegression':
model = linear_model.LinearRegression()
elif modelName == 'BayesianRidge':
model = linear_model.BayesianRidge()
elif modelName == 'ARDRegression':
model = linear_model.ARDRegression()
elif modelName == 'ElasticNet':
model = linear_model.ElasticNet()
elif modelName == 'HuberRegressor':
model = linear_model.HuberRegressor()
elif modelName == 'Lasso':
model = linear_model.Lasso()
elif modelName == 'LassoLars':
model = linear_model.LassoLars()
elif modelName == 'Rigid':
model = linear_model.Ridge()
elif modelName == 'SGDRegressor':
model = linear_model.SGDRegressor()
elif modelName == 'SVR':
model = SVR()
elif modelName=='MLPClassifier':
model = MLPClassifier()
elif modelName=='KNeighborsClassifier':
model = KNeighborsClassifier()
elif modelName=='SVC':
model = SVC()
elif modelName=='GaussianProcessClassifier':
model = GaussianProcessClassifier()
elif modelName=='DecisionTreeClassifier':
model = DecisionTreeClassifier()
elif modelName=='RandomForestClassifier':
model = RandomForestClassifier()
elif modelName=='AdaBoostClassifier':
model = AdaBoostClassifier()
elif modelName=='GaussianNB':
model = GaussianNB()
elif modelName=='LogisticRegression':
model = linear_model.LogisticRegression()
elif modelName=='QuadraticDiscriminantAnalysis':
model = QuadraticDiscriminantAnalysis()
return model