python类RFECV的实例源码

utils_feature_selection.py 文件源码 项目:auto_ml 作者: ClimbsRocks 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def get_feature_selection_model_from_name(type_of_estimator, model_name):
    model_map = {
        'classifier': {
            'SelectFromModel': SelectFromModel(RandomForestClassifier(n_jobs=-1, max_depth=10, n_estimators=15), threshold='20*mean'),
            'RFECV': RFECV(estimator=RandomForestClassifier(n_jobs=-1), step=0.1),
            'GenericUnivariateSelect': GenericUnivariateSelect(),
            'KeepAll': 'KeepAll'
        },
        'regressor': {
            'SelectFromModel': SelectFromModel(RandomForestRegressor(n_jobs=-1, max_depth=10, n_estimators=15), threshold='0.7*mean'),
            'RFECV': RFECV(estimator=RandomForestRegressor(n_jobs=-1), step=0.1),
            'GenericUnivariateSelect': GenericUnivariateSelect(),
            'KeepAll': 'KeepAll'
        }
    }

    return model_map[type_of_estimator][model_name]
utils_feature_selection.py 文件源码 项目:auto_ml 作者: doordash 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_feature_selection_model_from_name(type_of_estimator, model_name):
    model_map = {
        'classifier': {
            'SelectFromModel': SelectFromModel(RandomForestClassifier(n_jobs=-1, max_depth=10, n_estimators=15), threshold='20*mean'),
            'RFECV': RFECV(estimator=RandomForestClassifier(n_jobs=-1), step=0.1),
            'GenericUnivariateSelect': GenericUnivariateSelect(),
            'RandomizedSparse': RandomizedLogisticRegression(),
            'KeepAll': 'KeepAll'
        },
        'regressor': {
            'SelectFromModel': SelectFromModel(RandomForestRegressor(n_jobs=-1, max_depth=10, n_estimators=15), threshold='0.7*mean'),
            'RFECV': RFECV(estimator=RandomForestRegressor(n_jobs=-1), step=0.1),
            'GenericUnivariateSelect': GenericUnivariateSelect(),
            'RandomizedSparse': RandomizedLasso(),
            'KeepAll': 'KeepAll'
        }
    }

    return model_map[type_of_estimator][model_name]
11.6 feature_selection_bagging.py 文件源码 项目:ML-note 作者: JasonK93 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_RFECV():
    '''
    test the method of RFECV
    :return:  None
    '''
    iris=load_iris()
    X=iris.data
    y=iris.target
    estimator=LinearSVC()
    selector=RFECV(estimator=estimator,cv=3)
    selector.fit(X,y)
    print("N_features %s"%selector.n_features_)
    print("Support is %s"%selector.support_)
    print("Ranking %s"%selector.ranking_)
    print("Grid Scores %s"%selector.grid_scores_)
genericmodelclass.py 文件源码 项目:easyML 作者: aarshayj 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def recursive_feature_elimination_cv(self, step=1, inplace=False):
        """A method to implement recursive feature elimination on the model 
        with cross-validation(CV). At each step, features are ranked as per 
        the algorithm used and lowest ranked features are removed,
        as specified by the step argument. At each step, the CV score is 
        determined using the scoring metric specified in the model. The set 
        of features with highest cross validation scores is then chosen. 

        Parameters
        __________
        step : int or float, default=1
            If int, then step corresponds to the number of features to remove
            at each iteration. 
            If float and within (0.0, 1.0), then step corresponds to the 
            percentage (rounded down) of features to remove at each 
            iteration.
            If float and greater than one, then integral part will be
            considered as an integer input

        inplace : bool, default=False
            If True, the predictors of the class are modified to those 
            selected by the RFECV procedure.

        Returns
        _______
        selected : pandas series
            A series object containing the selected features as 
            index and their rank in selection as values
        """
        rfecv = RFECV(
                self.alg, step=step,cv=self.cv_folds,
                scoring=self.scoring_metric,n_jobs=-1
                )

        rfecv.fit(
                self.datablock.train[self.predictors], 
                self.datablock.train[self.datablock.target]
                )

        if step>1:
            min_nfeat = (len(self.predictors) 
                        - step*(len(rfecv.grid_scores_)-1))

            plt.xlabel("Number of features selected")
            plt.ylabel("Cross validation score")
            plt.plot(
                    range(min_nfeat, len(self.predictors)+1, step), 
                    rfecv.grid_scores_
                    )
            plt.show(block=False)

        ranks = pd.Series(rfecv.ranking_, index=self.predictors)
        selected = ranks.loc[rfecv.support_]

        if inplace:
            self.set_predictors(selected.index.tolist())
        return ranks
actual.py 文件源码 项目:AnswerClassify 作者: kenluck2001 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def selectFeatures (clf, X, Y):
    # Create the RFE object and compute a cross-validated score.
    # The "accuracy" scoring is proportional to the number of correct
    # classifications
    rfecv = RFECV(estimator=clf, step=1, cv=StratifiedKFold(Y, 5),
                  scoring='accuracy')
    rfecv.fit(X, Y)
    lst = rfecv.get_support()
    indices = find(lst, True)
    return X[:, indices], indices
doc.py 文件源码 项目:AnswerClassify 作者: kenluck2001 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def selectFeatures (clf, X, Y):
    # Create the RFE object and compute a cross-validated score.
    # The "accuracy" scoring is proportional to the number of correct
    # classifications
    rfecv = RFECV(estimator=clf, step=1, cv=StratifiedKFold(Y, 5),
                  scoring='accuracy')
    rfecv.fit(X, Y)
    lst = rfecv.get_support()
    indices = find(lst, True)
    return X[:, indices]
ml_feature_select.py 文件源码 项目:toho_mir_ml 作者: kodack64 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def featureSelect(useFeature,trueSet,falseSet):

    # load data and split
    X_true = []
    for dn in trueSet:
        fin = open("./learn/data/"+useFeature+"_"+dn+".pkl","rb")
        X_true.append(pickle.load(fin))
        fin.close()
    X_true = np.vstack(X_true)
    print(X_true.shape)

    X_false = []
    for dn in falseSet:
        fin = open("./learn/data/"+useFeature+"_"+dn+".pkl","rb")
        X_false.append(pickle.load(fin))
        fin.close()
    X_false = np.vstack(X_false)
    print(X_false.shape)

    test_size = 0.5
    X_true_train,X_true_test = train_test_split(X_true ,test_size=test_size)
    X_false_train, X_false_test = train_test_split(X_false ,train_size=len(X_true_train),test_size=len(X_true_test))
    print(X_true_train.shape,X_true_test.shape)
    print(X_false_train.shape,X_false_test.shape)

    X = np.vstack([X_true_train,X_false_train])
    X_ = np.vstack([X_true_test,X_false_test])
    Y = [1]*len(X_true_train)+[0]*len(X_false_train)
    Y_ = [1]*len(X_true_test)+[0]*len(X_false_test)
    X,Y = shuffle(X,Y)
    X_,Y_ = shuffle(X_,Y_)

    featNames = ml_feature_name.getFeatureName(useFeature)

#    clf = Lasso(alpha=0.01)
    clf = LinearSVC(C=0.1)
    rfe = RFECV(estimator = clf , step = 1,cv = 3,verbose = 1)
    rfe.fit(X,Y)
    print("best is {0} features".format(rfe.n_features_))
#    ranking = rfe.ranking_;
#    fn = list(zip(ranking,featNames))
#    fn.sort()
#    print("\n".join([str(v) for v in fn][:20]))
    ss = rfe.grid_scores_
    plt.plot(range(len(ss)),ss)
    plt.savefig("./learn/feature/"+useFeature+"_fselect.png")
    plt.show()

    Xs = rfe.transform(X)
    Xs_ = rfe.transform(X_)
    clf.fit(Xs,Y)
    Yp = clf.predict(Xs)
    Yp_ = clf.predict(Xs_)
    print(classification_report(Y,Yp))
    print(classification_report(Y_,Yp_))
    clf.fit(X,Y)
    Yp = clf.predict(X)
    Yp_ = clf.predict(X_)
    print(classification_report(Y,Yp))
    print(classification_report(Y_,Yp_))
    print(X.shape,Xs.shape)
feature_selection_insight.py 文件源码 项目:karura 作者: chakki-works 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def adopt(self, dfe, interpreted=None):
        models = []
        # about scoring, please see following document
        # http://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values
        scoring = "accuracy"

        # todo: now, text and datetime colum is ignored
        for t in (FType.text, FType.datetime):
            columns = dfe.get_columns(t, include_target=False)
            dfe.df.drop(columns, inplace=True, axis=1)
            dfe.sync()

        if dfe.get_target_ftype() == FType.categorical:
            #models = [RandomForestClassifier(), SVC(kernel="linear")]
            models = [RandomForestClassifier()]
            if self.is_binary_classification(dfe):
                scoring = "f1"
            else:
                # see reference about f1 score
                # http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score
                scoring = "f1_micro"  # if prediction does not occur to some label, macro is too worse to evaluate
        elif dfe.get_target_ftype() == FType.numerical:
            # About the model to select the feature, please refer
            # http://scikit-learn.org/stable/modules/feature_selection.html
            models = [Lasso(alpha=.1), RandomForestRegressor()]
            scoring = "r2"
        else:
            raise Exception("Target type is None or un-predictable type.")

        features = dfe.get_features()
        target = dfe.get_target()
        best_rfecv = None
        feature_masks = []
        for m in models:
            rfecv = RFECV(estimator=m, step=1, cv=self.cv_count, scoring=scoring, n_jobs=self.n_jobs)
            rfecv.fit(features, target)
            feature_masks.append(rfecv.support_)

        selected_mask = []
        if len(feature_masks) < 2:
            selected_mask = feature_masks[0]
        else:
            selected_mask = np.logical_and(*feature_masks)  # take the feature that some models take

        eliminates = features.columns[np.logical_not(selected_mask)]
        dfe.df.drop(eliminates, inplace=True, axis=1)
        dfe.sync()

        selected = features.columns[selected_mask].tolist()

        ss = self.a2t(selected)
        self.description = {
                "ja": "??{}??????????????????????????????".format(ss),
                "en": "Columns {} are useful to predict. I'll use these to make model.".format(ss)
            }
        return True


问题


面经


文章

微信
公众号

扫码关注公众号