python类chi2()的实例源码

ClassifierStuff.py 文件源码 项目:VERSE 作者: jakelever 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def buildVectorizer(classes, examples, parameters):
    featureChoice = None
    doFeatureSelection = False
    tfidf = False
    featureSelectPerc = 10

    if "featureChoice" in parameters:
        featureChoice = parameters["featureChoice"]
    if "doFeatureSelection" in parameters and parameters["doFeatureSelection"] == "True":
        doFeatureSelection = True
    if "featureSelectPerc" in parameters:
        featureSelectPerc = int(parameters["featureSelectPerc"])
    if "tfidf" in parameters and parameters["tfidf"] == "True":
        tfidf = True

    print "Starting vectorizer..."
    vectorizer = Vectorizer(classes,examples,featureChoice,tfidf)
    vectors = vectorizer.getTrainingVectors()
    print "Vectors of size:", vectors.shape

    if doFeatureSelection:
        print "Trimming training vectors..."
        from sklearn.feature_selection import SelectKBest,SelectPercentile,chi2
        #featureSelector = SelectKBest(chi2, k=100)`:
        featureSelector = SelectPercentile(chi2,featureSelectPerc)
        vectorsTrimmed = featureSelector.fit_transform(vectors, classes)
        vectorsTrimmed = coo_matrix(vectorsTrimmed)
        print "Trimmed training vectors of size:", vectorsTrimmed.shape
    else:
        vectorsTrimmed = vectors
        featureSelector = None

    return vectorsTrimmed,vectorizer,featureSelector
semeval_regression_quantification.py 文件源码 项目:semeval2016-task4 作者: aesuli 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def main():
    sys.stdout = codecs.getwriter('utf8')(sys.stdout.buffer)
    parser = argparse.ArgumentParser(description='')
    parser.add_argument('-i', '--input', help='Input file', required=True)
    parser.add_argument('-t', '--test', help='Test file', required=True)
    parser.add_argument('-o', '--output', help='Output filename prefix', required=True)
    parser.add_argument('-c', '--c', help='C value for SVM', type=float, default=1.0)
    parser.add_argument('-k', '--k', help='Number of features to keep', type=int, default=1000)
    args = parser.parse_args()

    data = read_semeval_quantification_regression(args.input, encoding='windows-1252')

    texts = list()
    labels = list()
    topics = list()
    for topic in data:
        topic_texts, topic_labels = data[topic]
        texts.extend(topic_texts)
        labels.extend(topic_labels)
        topics.extend([topic for _ in topic_labels])

    analyzer = get_rich_analyzer(word_ngrams=[2, 3], char_ngrams=[4])

    pipeline = Pipeline([
        ('vect', CountVectorizer(analyzer=analyzer)),
        ('tfidf', TfidfTransformer()),
        ('sel', SelectKBest(chi2, k=args.k)),
        ('clf', BinaryTreeRegressor(base_estimator=LinearSVC(C=args.c), verbose=False)),
    ])

    _, test_topics, test_texts = read_test_data(args.test, encoding='windows-1252')

    quantifier = RegressionQuantifier(pipeline)

    quantifier.fit(texts, labels, topics)

    quantification = quantifier.predict(test_texts, test_topics)

    sorted_topics = list(quantification)
    sorted_topics.sort()
    with open('%sc%f-k%i-plain-E.output' % (args.output, args.c, args.k), 'w', encoding='utf8') as plainfile, \
            open('%sc%f-k%i-corrected_train-E.output' % (args.output, args.c, args.k), 'w',
                 encoding='utf8') as corrected_trainfile, \
            open('%sc%f-k%i-corrected_test-E.output' % (args.output, args.c, args.k), 'w',
                 encoding='utf8') as corrected_testfile:
        for topic in sorted_topics:
            plain, corrected_train, corrected_test = quantification[topic]
            print(topic, *plain, sep='\t', file=plainfile)
            print(topic, *corrected_train, sep='\t', file=corrected_trainfile)
            print(topic, *corrected_test, sep='\t', file=corrected_testfile)
semeval_classification.py 文件源码 项目:semeval2016-task4 作者: aesuli 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def main():
    sys.stdout = codecs.getwriter('utf8')(sys.stdout.buffer)
    parser = argparse.ArgumentParser(description='')
    parser.add_argument('-i', '--input', help='Input file', required=True)
    parser.add_argument('-b', '--binary',
                        help='Polarity classification, i.e., posivitive vs negative (default: posivitive/negative/neutral classification)',
                        action='store_true')
    parser.add_argument('-t', '--test', help='Test file', required=True)
    parser.add_argument('-o', '--output', help='Output filename prefix', required=True)
    parser.add_argument('-c', '--c', help='C value for SVM', type=float, default=1.0)
    parser.add_argument('-k', '--k', help='Number of features to keep', type=int, default=1000)
    args = parser.parse_args()

    data = read_semeval_classification(args.input, encoding='windows-1252')
    if args.binary:
        data = filter_polarity_classification(data)

    analyzer = get_rich_analyzer(word_ngrams=[2, 3], char_ngrams=[4])

    pipeline = Pipeline([
        ('vect', CountVectorizer(analyzer=analyzer)),
        ('tfidf', TfidfTransformer()),
        ('sel', SelectKBest(chi2, k=args.k)),
        ('clf', LinearSVC(C=args.c)),
    ])

    pipeline.fit(data[0], data[1])

    test = read_test_data(args.test, args.binary, encoding='windows-1252', topic=args.binary)

    classifier = pipeline.fit(data[0], data[1])

    y = classifier.predict(test[1])

    if args.binary:
        task = 'B'
    else:
        task = 'A'

    with open('%sc%f-k%i-%s.output' % (args.output, args.c, args.k, task), 'w', encoding='utf8') as outfile:
        if args.binary:
            for id_, topic, label in zip(test[0], test[2], y):
                print(id_, topic, label, sep='\t', file=outfile)
        else:
            for id_, label in zip(test[0], y):
                print(id_, label, sep='\t', file=outfile)
ScikitLearners.py 文件源码 项目:Aion 作者: aleisalem 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def predictAndTestEnsemble(X, y, Xtest, ytest, classifiers=[], selectKBest=0):
    """
    Trains an Ensemble of classifiers (with default params) and using a training dataset, 
    and returns majority vote using the same training dataset and an out-of-sample test dataset
    :type X: list
    :param y: The labels corresponding to the training feature vectors
    :type y: list
    :param Xtest: The matrix of test feature vectors
    :type Xtest: list
    :param ytest: The labels corresponding to the test feature vectors
    :type ytest: list
    :param classifiers: A list of classifiers to use in the ensemble
    :type classifiers: list of str
    :param selectKBest: The number of best features to select
    :type selectKBest: int
    :return: Two lists of the validation and test accuracies across the k-folds
    """
    try:
        predicted, predicted_test = [], []
        # Prepare the data
        X, y, Xtest, ytest = numpy.array(X), numpy.array(y), numpy.array(Xtest), numpy.array(ytest)
        # Define classifiers
        ensembleClassifiers = []
        for c in classifiers:
            if c.lower().find("knn") != -1:
                K = int(c.split('-')[-1])
                clf = neighbors.KNeighborsClassifier(n_neighbors=K)
            elif c.lower().find("svm") != -1:
                clf = svm.SVC(kernel='linear', C=1)
            elif c.lower().find("forest") != -1:
                E = int(c.split('-')[-1])
                clf = ensemble.RandomForestClassifier(n_estimators=E,)
            # Add to list
            ensembleClassifiers.append((c, clf))
        # Select K Best features if applicable
        X_new = SelectKBest(chi2, k=selectKBest).fit_transform(X, y) if selectKBest > 0 else X
        Xtest_new = SelectKBest(chi2, k=selectKBest).fit_transform(Xtest, ytest) if selectKBest > 0 else Xtest
        # Train and fit the voting classifier
        voting = VotingClassifier(estimators=ensembleClassifiers, voting='hard')
        prettyPrint("Fitting ensemble model")
        voting = voting.fit(X_new, y)
        prettyPrint("Validating model")
        predicted = voting.predict(X_new)
        # Same for the test dataset
        prettyPrint("Testing the model")
        predicted_test = voting.predict(Xtest_new)

    except Exception as e:
        prettyPrintError(e) 
        return [], []

    return predicted, predicted_test
ScikitLearners.py 文件源码 项目:Aion 作者: aleisalem 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def predictAndTestRandomForest(X, y, Xtest, ytest, estimators=10, criterion="gini", maxdepth=None, selectKBest=0):
    """
    Trains a tree using the training data and tests it using the test data using K-fold cross validation
    :param Xtr: The matrix of training feature vectors
    :type Xtr: list
    :param ytr: The labels corresponding to the training feature vectors
    :type ytr: list
    :param Xte: The matrix of test feature vectors
    :type yte: list
    :param estimators: The number of random trees to use in classification
    :type estimators: int
    :param criterion: The splitting criterion employed by the decision tree
    :type criterion: str
    :param maxdepth: The maximum depth the tree is allowed to grow
    :type maxdepth: int
    :param selectKBest: The number of best features to select
    :type selectKBest: int 
    :return: Two lists of the validation and test accuracies across the 10 folds
    """
    try:
        predicted, predicted_test = [], []
        # Define classifier and cross validation iterator
        clf = ensemble.RandomForestClassifier(n_estimators=estimators, criterion=criterion, max_depth=maxdepth)
        # Start the cross validation learning
        X, y, Xtest, ytest = numpy.array(X), numpy.array(y), numpy.array(Xtest), numpy.array(ytest)
        # Select K Best features if enabled
        prettyPrint("Selecting %s best features from feature vectors" % selectKBest)
        X_new = SelectKBest(chi2, k=selectKBest).fit_transform(X, y) if selectKBest > 0 else X
        Xtest_new = SelectKBest(chi2, k=selectKBest).fit_transform(Xtest, ytest) if selectKBest > 0 else Xtest
        # Fit model
        prettyPrint("Fitting model")
        clf.fit(X_new, y)
        # Validate and test model
        prettyPrint("Validating model using training data")
        predicted = clf.predict(X_new)
        prettyPrint("Testing model")
        predicted_test = clf.predict(Xtest_new)

    except Exception as e:
        prettyPrintError(e)
        return [], []

    return predicted, predicted_test
scikitre.py 文件源码 项目:IBRel 作者: lasigeBioTM 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def train(self):
        parameters = {'vect__ngram_range': [(1, 1), (1, 2), (1,3), (2,3)],
                      #'vect__binary': (True, False),

                      'clf__alpha': (1e-2, 1e-3, 1e-1, 1e-4, 1e-5),
                      'clf__loss': ('hinge', 'log'),
                      'clf__penalty': ('l2', 'l1', 'elasticnet')

                       # 'clf__nu': (0.5,0.6),
                      #'clf__kernel': ('rbf', 'linear', 'poly'),
                      # 'clf__tol': (1e-3, 1e-4, 1e-2, 1e-4)

                      #'clf__n_estimators': (10, 50, 100, 500),
                      #'clf__criterion': ('gini', 'entropy'),
                      #'clf__max_features': ("auto", "log2", 100,)

                     #'clf__alpha': (0, 1e-2, 1e-3, 1e-1, 1e-4, 1e-5),
                      #'clf__fit_prior': (False, True),
                     }
        # gs_clf = GridSearchCV(self.text_clf, parameters, n_jobs=-1, scoring=self.posfmeasure)
        # gs_clf = gs_clf.fit(self.features, self.labels)
        # print gs_clf.best_params_
        logging.info("Traning with {}/{} true pairs".format(str(sum(self.labels)), str(len(self.labels))))
        try:
            self.text_clf = self.text_clf.fit(self.features, self.labels)
        except ValueError:
            print "error training {}".format(self.modelname)
            return
        if not os.path.exists(self.basedir + self.modelname):
            os.makedirs(self.basedir + self.modelname)
        logging.info("Training complete, saving to {}/{}/{}.pkl".format(self.basedir, self.modelname, self.modelname))
        joblib.dump(self.text_clf, "{}/{}/{}.pkl".format(self.basedir, self.modelname, self.modelname))
        ch2 = SelectKBest(chi2, k=20)
        half_point = int(len(self.features)*0.5)
        X_train = self.text_clf.named_steps["vect"].fit_transform(self.features[:half_point])
        X_test = self.text_clf.named_steps["vect"].transform(self.features[half_point:])
        X_train = ch2.fit_transform(X_train, self.labels[:half_point])
        X_test = ch2.transform(X_test)
        feature_names = self.text_clf.named_steps["vect"].get_feature_names()
        feature_names = [feature_names[i] for i
                         in ch2.get_support(indices=True)]
        print feature_names
        # joblib.dump(gs_clf.best_estimator_, "{}/{}/{}.pkl".format(self.basedir, self.modelname, self.modelname))
        # self.test()
seedev_corpus.py 文件源码 项目:IBRel 作者: lasigeBioTM 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def train_sentence_classifier(self, pairtype):
        self.text_clf = Pipeline([('vect', CountVectorizer(analyzer='char_wb', ngram_range=(7,20), min_df=0.2, max_df=0.5)),
                             #('vect', CountVectorizer(analyzer='word', ngram_range=(1,5), stop_words="english", min_df=0.1)),
                             #     ('tfidf', TfidfTransformer(use_idf=True, norm="l2")),
                                  #('tfidf', TfidfVectorizer(analyzer='char_wb', ngram_range=(6,20))),
                                  #('clf', SGDClassifier(loss='hinge', penalty='l1', alpha=0.01, n_iter=5, random_state=42)),
                                  #('clf', SGDClassifier())
                                  #('clf', svm.SVC(kernel='rbf', C=10, verbose=True, tol=1e-5))
                                  #('clf', RandomForestClassifier(n_estimators=10))
                                    #('feature_selection', feature_selection.SelectFromModel(LinearSVC(penalty="l1"))),
                                  ('clf', MultinomialNB(alpha=0.1, fit_prior=False))
                                  #('clf', DummyClassifier(strategy="constant", constant=True))
                                 ])
        f, labels, sids = self.get_features(pairtype)
        half_point = int(len(f)*0.5)
        self.train_sentences = sids[:half_point]
        """ch2 = SelectKBest(chi2, k=20)
        X_train = text_clf.named_steps["vect"].fit_transform(f[:half_point])
        X_test = text_clf.named_steps["vect"].transform(f[half_point:])
        X_train = ch2.fit_transform(X_train, labels[:half_point])
        X_test = ch2.transform(X_test)
        feature_names = text_clf.named_steps["vect"].get_feature_names()
        feature_names = [feature_names[i] for i
                         in ch2.get_support(indices=True)]
        # print feature_names"""
        # train
        text_clf = self.text_clf.fit(f[:half_point], labels[:half_point])

        #save model
        if not os.path.exists("models/kernel_models/" + pairtype + "_sentence_classifier/"):
            os.makedirs("models/kernel_models/" + pairtype + "_sentence_classifier/")
        logging.info("Training complete, saving to {}/{}/{}.pkl".format("models/kernel_models/",
                                                                        pairtype + "_sentence_classifier/", pairtype))
        joblib.dump(text_clf, "{}/{}/{}.pkl".format("models/kernel_models/",
                                                                        pairtype + "_sentence_classifier/", pairtype))

        # evaluate
        pred = text_clf.predict(f[half_point:])
        # print len(pred), sum(pred)
        self.type_sentences[pairtype] = []
        for ip, p in enumerate(pred):
            if p:
                self.type_sentences[pairtype].append(sids[half_point + ip])

        res = metrics.confusion_matrix(labels[half_point:], pred)
        return res[1][1], res[0][1], res[1][0]


问题


面经


文章

微信
公众号

扫码关注公众号