def lession_6():
db = datasets.load_boston()
#print db.data.shape
data_X=db.data
data_y=db.target
model = LinearRegression()
model.fit(data_X,data_y)
print model.coef_
print model.intercept_
print model.score(data_X,data_y)
python类load_boston()的实例源码
test_random_forest_classifier_numeric.py 文件源码
项目:coremltools
作者: apple
项目源码
文件源码
阅读 20
收藏 0
点赞 0
评论 0
def setUpClass(self):
"""
Set up the unit test by loading the dataset and training a model.
"""
from sklearn.datasets import load_boston
# Load data and train model
scikit_data = load_boston()
self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data
self.target = 1 * (scikit_data['target'] > scikit_data['target'].mean())
self.feature_names = scikit_data.feature_names
self.output_name = 'target'
self.scikit_data = scikit_data
def setUpClass(self):
"""
Set up the unit test by loading the dataset and training a model.
"""
from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestClassifier
scikit_data = load_boston()
scikit_model = RandomForestClassifier(random_state = 1)
target = 1 * (scikit_data['target'] > scikit_data['target'].mean())
scikit_model.fit(scikit_data['data'], target)
# Save the data and the model
self.scikit_data = scikit_data
self.scikit_model = scikit_model
def scikit_data(self):
return load_boston()
def setUpClass(self):
"""
Set up the unit test by loading the dataset and training a model.
"""
from sklearn.datasets import load_boston
from sklearn.tree import DecisionTreeRegressor
scikit_data = load_boston()
scikit_model = DecisionTreeRegressor(random_state = 1)
scikit_model.fit(scikit_data['data'], scikit_data['target'])
# Save the data and the model
self.scikit_data = scikit_data
self.scikit_model = scikit_model
def setUpClass(cls):
"""
Set up the unit test by loading the dataset and training a model.
"""
if not HAS_SKLEARN:
return
scikit_data = load_boston()
scikit_model = GradientBoostingRegressor(random_state = 1)
scikit_model.fit(scikit_data['data'], scikit_data['target'])
# Save the data and the model
cls.scikit_data = scikit_data
cls.scikit_model = scikit_model
def setUpClass(self):
"""
Set up the unit test by loading the dataset and training a model.
"""
if not HAS_SKLEARN:
return
scikit_data = load_boston()
scikit_model = SVR(kernel='linear')
scikit_model.fit(scikit_data['data'], scikit_data['target'])
# Save the data and the model
self.scikit_data = scikit_data
self.scikit_model = scikit_model
test_random_forest_regression_numeric.py 文件源码
项目:coremltools
作者: apple
项目源码
文件源码
阅读 23
收藏 0
点赞 0
评论 0
def setUpClass(self):
"""
Set up the unit test by loading the dataset and training a model.
"""
from sklearn.datasets import load_boston
# Load data and train model
scikit_data = load_boston()
self.scikit_data = scikit_data
self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data
self.target = scikit_data.target
self.feature_names = scikit_data.feature_names
self.output_name = 'target'
test_boosted_trees_classifier_numeric.py 文件源码
项目:coremltools
作者: apple
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def setUpClass(self):
"""
Set up the unit test by loading the dataset and training a model.
"""
from sklearn.datasets import load_boston
# Load data and train model
scikit_data = load_boston()
self.scikit_data = scikit_data
self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data
self.target = 1 * (scikit_data['target'] > scikit_data['target'].mean())
self.feature_names = scikit_data.feature_names
self.output_name = 'target'
def test_boston(self):
from sklearn.datasets import load_boston
scikit_data = load_boston()
scikit_model = Normalizer(norm='l2').fit(scikit_data.data)
spec = converter.convert(scikit_model, scikit_data.feature_names, 'out')
input_data = [dict(zip(scikit_data.feature_names, row))
for row in scikit_data.data]
output_data = [{"out" : row} for row in scikit_model.transform(scikit_data.data)]
evaluate_transformer(spec, input_data, output_data)
def setUpClass(self):
"""
Set up the unit test by loading the dataset and training a model.
"""
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
scikit_data = load_boston()
scikit_model = LinearRegression()
scikit_model.fit(scikit_data['data'], scikit_data['target'])
# Save the data and the model
self.scikit_data = scikit_data
self.scikit_model = scikit_model
def test_conversion_boston(self):
from sklearn.datasets import load_boston
scikit_data = load_boston()
sh = scikit_data.data.shape
rn.seed(0)
missing_value_indices = [(rn.randint(sh[0]), rn.randint(sh[1]))
for k in range(sh[0])]
for strategy in ["mean", "median", "most_frequent"]:
for missing_value in [0, 'NaN', -999]:
X = np.array(scikit_data.data).copy()
for i, j in missing_value_indices:
X[i,j] = missing_value
model = Imputer(missing_values = missing_value, strategy = strategy)
model = model.fit(X)
tr_X = model.transform(X.copy())
spec = converter.convert(model, scikit_data.feature_names, 'out')
input_data = [dict(zip(scikit_data.feature_names, row))
for row in X]
output_data = [{"out" : row} for row in tr_X]
result = evaluate_transformer(spec, input_data, output_data)
assert result["num_errors"] == 0
test_decision_tree_regression_numeric.py 文件源码
项目:coremltools
作者: apple
项目源码
文件源码
阅读 84
收藏 0
点赞 0
评论 0
def setUpClass(self):
"""
Set up the unit test by loading the dataset and training a model.
"""
from sklearn.datasets import load_boston
from sklearn.tree import DecisionTreeRegressor
# Load data and train model
scikit_data = load_boston()
self.scikit_data = scikit_data
self.X = scikit_data['data']
self.target = scikit_data['target']
self.feature_names = scikit_data.feature_names
self.output_name = 'target'
def setUpClass(self):
"""
Set up the unit test by loading the dataset and training a model.
"""
from sklearn.datasets import load_boston
scikit_data = load_boston()
scikit_model = GradientBoostingClassifier(random_state = 1)
target = scikit_data['target'] > scikit_data['target'].mean()
scikit_model.fit(scikit_data['data'], target)
# Save the data and the model
self.scikit_data = scikit_data
self.scikit_model = scikit_model
test_boosted_trees_regression_numeric.py 文件源码
项目:coremltools
作者: apple
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def setUpClass(self):
# Load data and train model
scikit_data = load_boston()
self.scikit_data = scikit_data
self.X = scikit_data['data']
self.target = scikit_data['target']
self.feature_names = scikit_data.feature_names
self.output_name = 'target'
test_boosted_trees_regression_numeric.py 文件源码
项目:coremltools
作者: apple
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def setUpClass(self):
"""
Set up the unit test by loading the dataset and training a model.
"""
# Load data and train model
scikit_data = load_boston()
self.X = scikit_data.data
self.scikit_data = self.X
self.target = scikit_data.target
self.feature_names = scikit_data.feature_names
self.output_name = 'target'
def setUpClass(self):
"""
Set up the unit test by loading the dataset and training a model.
"""
from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
scikit_data = load_boston()
scikit_model = RandomForestRegressor(random_state = 1)
scikit_model.fit(scikit_data['data'], scikit_data['target'])
# Save the data and the model
self.scikit_data = scikit_data
self.scikit_model = scikit_model
test_decision_tree_classifier_numeric.py 文件源码
项目:coremltools
作者: apple
项目源码
文件源码
阅读 48
收藏 0
点赞 0
评论 0
def setUpClass(self):
from sklearn.datasets import load_boston
from sklearn.tree import DecisionTreeClassifier
# Load data and train model
scikit_data = load_boston()
self.scikit_data = scikit_data
self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data
self.target = 1 * (scikit_data['target'] > scikit_data['target'].mean())
self.feature_names = scikit_data.feature_names
self.output_name = 'target'
def get_boston_regression_dataset():
boston = load_boston()
df_boston = pd.DataFrame(boston.data)
df_boston.columns = boston.feature_names
df_boston['MEDV'] = boston['target']
df_boston_train, df_boston_test = train_test_split(df_boston, test_size=0.33, random_state=42)
return df_boston_train, df_boston_test
def get_boston_regression_dataset():
boston = load_boston()
df_boston = pd.DataFrame(boston.data)
df_boston.columns = boston.feature_names
df_boston['MEDV'] = boston['target']
df_boston_train, df_boston_test = train_test_split(df_boston, test_size=0.33, random_state=42)
return df_boston_train, df_boston_test