python类load_boston()的实例源码

sklearn_usage.py 文件源码 项目:base_function 作者: Rockyzsu 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def lession_6():
    db = datasets.load_boston()
    #print db.data.shape
    data_X=db.data
    data_y=db.target
    model = LinearRegression()
    model.fit(data_X,data_y)
    print model.coef_
    print model.intercept_
    print model.score(data_X,data_y)
test_random_forest_classifier_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        from sklearn.datasets import load_boston

        # Load data and train model
        scikit_data = load_boston()
        self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data
        self.target = 1 * (scikit_data['target'] > scikit_data['target'].mean())
        self.feature_names = scikit_data.feature_names
        self.output_name = 'target'
        self.scikit_data = scikit_data
test_random_forest_classifier.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        from sklearn.datasets import load_boston
        from sklearn.ensemble import RandomForestClassifier

        scikit_data = load_boston()
        scikit_model = RandomForestClassifier(random_state = 1)
        target = 1 * (scikit_data['target'] > scikit_data['target'].mean())
        scikit_model.fit(scikit_data['data'], target)

        # Save the data and the model
        self.scikit_data = scikit_data
        self.scikit_model = scikit_model
test_io_types.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def scikit_data(self):
        return load_boston()
test_decision_tree_regression.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        from sklearn.datasets import load_boston
        from sklearn.tree import DecisionTreeRegressor

        scikit_data = load_boston()
        scikit_model = DecisionTreeRegressor(random_state = 1)
        scikit_model.fit(scikit_data['data'], scikit_data['target'])

        # Save the data and the model
        self.scikit_data = scikit_data
        self.scikit_model = scikit_model
test_boosted_trees_regression.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def setUpClass(cls):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        if not HAS_SKLEARN:
            return

        scikit_data = load_boston()
        scikit_model = GradientBoostingRegressor(random_state = 1)
        scikit_model.fit(scikit_data['data'], scikit_data['target'])

        # Save the data and the model
        cls.scikit_data = scikit_data
        cls.scikit_model = scikit_model
test_SVR.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        if not HAS_SKLEARN:
            return

        scikit_data = load_boston()
        scikit_model = SVR(kernel='linear')
        scikit_model.fit(scikit_data['data'], scikit_data['target'])

        # Save the data and the model
        self.scikit_data = scikit_data
        self.scikit_model = scikit_model
test_random_forest_regression_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        from sklearn.datasets import load_boston

        # Load data and train model
        scikit_data = load_boston()
        self.scikit_data = scikit_data
        self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data
        self.target = scikit_data.target
        self.feature_names = scikit_data.feature_names
        self.output_name = 'target'
test_boosted_trees_classifier_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        from sklearn.datasets import load_boston

        # Load data and train model
        scikit_data = load_boston()
        self.scikit_data = scikit_data
        self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data
        self.target = 1 * (scikit_data['target'] > scikit_data['target'].mean())
        self.feature_names = scikit_data.feature_names
        self.output_name = 'target'
test_normalizer.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_boston(self):
        from sklearn.datasets import load_boston

        scikit_data = load_boston()
        scikit_model = Normalizer(norm='l2').fit(scikit_data.data)

        spec = converter.convert(scikit_model, scikit_data.feature_names, 'out')

        input_data = [dict(zip(scikit_data.feature_names, row)) 
                for row in scikit_data.data]

        output_data = [{"out" : row} for row in scikit_model.transform(scikit_data.data)]

        evaluate_transformer(spec, input_data, output_data)
test_linear_regression.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        from sklearn.datasets import load_boston
        from sklearn.linear_model import LinearRegression

        scikit_data = load_boston()
        scikit_model = LinearRegression()
        scikit_model.fit(scikit_data['data'], scikit_data['target'])

        # Save the data and the model
        self.scikit_data = scikit_data
        self.scikit_model = scikit_model
test_imputer.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_conversion_boston(self):

        from sklearn.datasets import load_boston

        scikit_data = load_boston()

        sh = scikit_data.data.shape 

        rn.seed(0)
        missing_value_indices = [(rn.randint(sh[0]), rn.randint(sh[1])) 
                                    for k in range(sh[0])]

        for strategy in ["mean", "median", "most_frequent"]: 
            for missing_value in [0, 'NaN', -999]:

                X = np.array(scikit_data.data).copy()

                for i, j in missing_value_indices:
                    X[i,j] = missing_value

                model = Imputer(missing_values = missing_value, strategy = strategy)
                model = model.fit(X)

                tr_X = model.transform(X.copy())

                spec = converter.convert(model, scikit_data.feature_names, 'out')

                input_data = [dict(zip(scikit_data.feature_names, row)) 
                                for row in X]

                output_data = [{"out" : row} for row in tr_X]

                result = evaluate_transformer(spec, input_data, output_data)

                assert result["num_errors"] == 0
test_decision_tree_regression_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 84 收藏 0 点赞 0 评论 0
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        from sklearn.datasets import load_boston
        from sklearn.tree import DecisionTreeRegressor

        # Load data and train model
        scikit_data = load_boston()
        self.scikit_data = scikit_data
        self.X = scikit_data['data']
        self.target = scikit_data['target']
        self.feature_names = scikit_data.feature_names
        self.output_name = 'target'
test_boosted_trees_classifier.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        from sklearn.datasets import load_boston

        scikit_data = load_boston()
        scikit_model = GradientBoostingClassifier(random_state = 1)
        target = scikit_data['target'] > scikit_data['target'].mean()
        scikit_model.fit(scikit_data['data'], target)

        # Save the data and the model
        self.scikit_data = scikit_data
        self.scikit_model = scikit_model
test_boosted_trees_regression_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def setUpClass(self):
        # Load data and train model
        scikit_data = load_boston()
        self.scikit_data = scikit_data
        self.X = scikit_data['data']
        self.target = scikit_data['target']
        self.feature_names = scikit_data.feature_names
        self.output_name = 'target'
test_boosted_trees_regression_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """

        # Load data and train model
        scikit_data = load_boston()

        self.X = scikit_data.data
        self.scikit_data = self.X
        self.target = scikit_data.target
        self.feature_names = scikit_data.feature_names
        self.output_name = 'target'
test_random_forest_regression.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def setUpClass(self):
        """
        Set up the unit test by loading the dataset and training a model.
        """
        from sklearn.datasets import load_boston
        from sklearn.ensemble import RandomForestRegressor

        scikit_data = load_boston()
        scikit_model = RandomForestRegressor(random_state = 1)
        scikit_model.fit(scikit_data['data'], scikit_data['target'])

        # Save the data and the model
        self.scikit_data = scikit_data
        self.scikit_model = scikit_model
test_decision_tree_classifier_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 48 收藏 0 点赞 0 评论 0
def setUpClass(self):
        from sklearn.datasets import load_boston
        from sklearn.tree import DecisionTreeClassifier

        # Load data and train model
        scikit_data = load_boston()
        self.scikit_data = scikit_data
        self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data
        self.target = 1 * (scikit_data['target'] > scikit_data['target'].mean())
        self.feature_names = scikit_data.feature_names
        self.output_name = 'target'
quick_test.py 文件源码 项目:auto_ml 作者: ClimbsRocks 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_boston_regression_dataset():
    boston = load_boston()
    df_boston = pd.DataFrame(boston.data)
    df_boston.columns = boston.feature_names
    df_boston['MEDV'] = boston['target']
    df_boston_train, df_boston_test = train_test_split(df_boston, test_size=0.33, random_state=42)
    return df_boston_train, df_boston_test
utils_testing.py 文件源码 项目:auto_ml 作者: ClimbsRocks 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_boston_regression_dataset():
    boston = load_boston()
    df_boston = pd.DataFrame(boston.data)
    df_boston.columns = boston.feature_names
    df_boston['MEDV'] = boston['target']
    df_boston_train, df_boston_test = train_test_split(df_boston, test_size=0.33, random_state=42)
    return df_boston_train, df_boston_test


问题


面经


文章

微信
公众号

扫码关注公众号