python类load_iris()的实例源码

test_rfe.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_rfe_features_importance():
    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = iris.target

    clf = RandomForestClassifier(n_estimators=20,
                                 random_state=generator, max_depth=2)
    rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1)
    rfe.fit(X, y)
    assert_equal(len(rfe.ranking_), X.shape[1])

    clf_svc = SVC(kernel="linear")
    rfe_svc = RFE(estimator=clf_svc, n_features_to_select=4, step=0.1)
    rfe_svc.fit(X, y)

    # Check if the supports are equal
    assert_array_equal(rfe.get_support(), rfe_svc.get_support())
test_graph_lasso.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_graph_lasso_iris():
    # Hard-coded solution from R glasso package for alpha=1.0
    # The iris datasets in R and sklearn do not match in a few places, these
    # values are for the sklearn version
    cov_R = np.array([
        [0.68112222, 0.0, 0.2651911, 0.02467558],
        [0.00, 0.1867507, 0.0, 0.00],
        [0.26519111, 0.0, 3.0924249, 0.28774489],
        [0.02467558, 0.0, 0.2877449, 0.57853156]
        ])
    icov_R = np.array([
        [1.5188780, 0.0, -0.1302515, 0.0],
        [0.0, 5.354733, 0.0, 0.0],
        [-0.1302515, 0.0, 0.3502322, -0.1686399],
        [0.0, 0.0, -0.1686399, 1.8123908]
        ])
    X = datasets.load_iris().data
    emp_cov = empirical_covariance(X)
    for method in ('cd', 'lars'):
        cov, icov = graph_lasso(emp_cov, alpha=1.0, return_costs=False,
                                mode=method)
        assert_array_almost_equal(cov, cov_R)
        assert_array_almost_equal(icov, icov_R)
test_graph_lasso.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_graph_lasso_iris_singular():
    # Small subset of rows to test the rank-deficient case
    # Need to choose samples such that none of the variances are zero
    indices = np.arange(10, 13)

    # Hard-coded solution from R glasso package for alpha=0.01
    cov_R = np.array([
        [0.08, 0.056666662595, 0.00229729713223, 0.00153153142149],
        [0.056666662595, 0.082222222222, 0.00333333333333, 0.00222222222222],
        [0.002297297132, 0.003333333333, 0.00666666666667, 0.00009009009009],
        [0.001531531421, 0.002222222222, 0.00009009009009, 0.00222222222222]
    ])
    icov_R = np.array([
        [24.42244057, -16.831679593, 0.0, 0.0],
        [-16.83168201, 24.351841681, -6.206896552, -12.5],
        [0.0, -6.206896171, 153.103448276, 0.0],
        [0.0, -12.499999143, 0.0, 462.5]
    ])
    X = datasets.load_iris().data[indices, :]
    emp_cov = empirical_covariance(X)
    for method in ('cd', 'lars'):
        cov, icov = graph_lasso(emp_cov, alpha=0.01, return_costs=False,
                                mode=method)
        assert_array_almost_equal(cov, cov_R, decimal=5)
        assert_array_almost_equal(icov, icov_R, decimal=5)
grid_search_test.py 文件源码 项目:DeepLearning_VirtualReality_BigData_Project 作者: rashmitripathi 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def testIrisDNN(self):
    if HAS_SKLEARN:
      random.seed(42)
      iris = datasets.load_iris()
      feature_columns = learn.infer_real_valued_columns_from_input(iris.data)
      classifier = learn.DNNClassifier(
          feature_columns=feature_columns,
          hidden_units=[10, 20, 10],
          n_classes=3)
      grid_search = GridSearchCV(
          classifier, {'hidden_units': [[5, 5], [10, 10]]},
          scoring='accuracy',
          fit_params={'steps': [50]})
      grid_search.fit(iris.data, iris.target)
      score = accuracy_score(iris.target, grid_search.predict(iris.data))
      self.assertGreater(score, 0.5, 'Failed with score = {0}'.format(score))
fisher_iris_visualization.py 文件源码 项目:blender-scripting 作者: njanakiev 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def load_iris():
    try:
        # Load Iris dataset from the sklearn.datasets package
        from sklearn import datasets
        from sklearn import decomposition

        # Load Dataset
        iris = datasets.load_iris()
        X = iris.data
        y = iris.target
        labels = iris.target_names

        # Reduce components by Principal Component Analysis from sklearn
        X = decomposition.PCA(n_components=3).fit_transform(X)
    except ImportError:
        # Load Iris dataset manually
        path = os.path.join('data', 'iris', 'iris.data')
        iris_data = np.genfromtxt(path, dtype='str', delimiter=',')
        X = iris_data[:, :4].astype(dtype=float)
        y = np.ndarray((X.shape[0],), dtype=int)

        # Create target vector y and corresponding labels
        labels, idx = [], 0
        for i, label in enumerate(iris_data[:, 4]):
            label = label.split('-')[1]
            if label not in labels:
                labels.append(label); idx += 1
            y[i] = idx - 1

        # Reduce components by implemented Principal Component Analysis
        X = PCA(X, 3)[0]

    return X, y, labels
conftest.py 文件源码 项目:easyML 作者: aarshayj 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def datablock():
    X,y = load_iris(return_X_y=True)
    df = pd.DataFrame(X,columns=['var%d'%i for i in range(4)])
    df['target'] = y

    #make 1 variable categorical
    df['var3'] = df['var3'].apply(lambda x: int(x)).astype(object)

    #make outcome binary
    df['target'].loc[df['target']==2]=1
    return DataBlock(df,df,df,'target')
test_model_builder.py 文件源码 项目:karura 作者: icoxfog417 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def make_cl_dataset_and_field_manager(self):
        iris = datasets.load_iris()
        dataset = DataSet(iris.data, iris.target, iris.feature_names, iris.target_names)

        feature_fields = []
        for i, name in enumerate(dataset.feature_names):
            f = Field(name, "NUMBER", value_mean=np.mean(dataset.data[:, i]), value_std=np.std(dataset.data[:, i]))
            feature_fields.append(f)

        target = Field("flower kind", "DROP_DOWN", value_converter={"setosa": 0, "versicolor": 1, "virginica": 2})
        field_manager = FieldManager(-1, feature_fields, target)

        return dataset, field_manager
test_feature_builder.py 文件源码 项目:karura 作者: icoxfog417 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def make_dataset_and_field_manager(self):
        iris = datasets.load_iris()
        dataset = DataSet(iris.data, iris.target, iris.feature_names, iris.target_names)

        feature_fields = []
        for i, name in enumerate(dataset.feature_names):
            f = Field(name, "NUMBER", value_mean=np.mean(dataset.data[:, i]), value_std=np.std(dataset.data[:, i]))
            feature_fields.append(f)

        target = Field("flower kind", "DROP_DOWN", value_converter={"setosa": 0, "versicolor": 1, "virginica": 2})
        field_manager = FieldManager(-1, feature_fields, target)

        return dataset, field_manager
util.py 文件源码 项目:skutil 作者: tgsmith61591 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_iris_df(include_tgt=True, tgt_name="Species", shuffle=False):
    """Loads the iris dataset into a dataframe with the
    target set as the "Species" feature or whatever name
    is specified in ``tgt_name``.

    Parameters
    ----------

    include_tgt : bool, optional (default=True)
        Whether to include the target

    tgt_name : str, optional (default="Species")
        The name of the target feature

    shuffle : bool, optional (default=False)
        Whether to shuffle the rows on return


    Returns
    -------

    X : pd.DataFrame, shape=(n_samples, n_features)
        The loaded dataset
    """
    iris = load_iris()
    X = pd.DataFrame.from_records(data=iris.data, columns=iris.feature_names)

    if include_tgt:
        X[tgt_name] = iris.target

    return X if not shuffle else shuffle_dataframe(X)
driver.py 文件源码 项目:Dense-Net 作者: achyudhk 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def backward(self, dz):
        dx, dw, db = layers.linear_backward(dz, self.cache1)
        return dx, dw, db

# iris = datasets.load_iris()
# X = iris.data
# Y = iris.target
# Y = to_categorical(iris.target, 3)
basic_driver.py 文件源码 项目:Dense-Net 作者: achyudhk 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def iris_softmax():
    print("Initializing net for Iris dataset classification problem. . .")
    iris = load_iris()
    X = iris.data
    Y = iris.target

    dn = DenseNet(input_dim=4, optim_config={"type": "sgd", "learning_rate": 0.05}, loss_fn='softmax')
    dn.addlayer("ReLU", 4)
    dn.addlayer("ReLU", 6)
    dn.addlayer("ReLU", 3)

    for i in range(600):
        print("Iteration: ", i)
        dn.train(X, Y)
basic_driver.py 文件源码 项目:Dense-Net 作者: achyudhk 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def iris_svm():
    print("Initializing net for Iris dataset classification problem. . .")
    iris = load_iris()
    X = iris.data
    Y = iris.target

    dn = DenseNet(input_dim=4, optim_config={"type": "sgd", "learning_rate": 0.01}, loss_fn='svm')
    dn.addlayer("ReLU", 4)
    dn.addlayer("ReLU", 6)
    dn.addlayer("ReLU", 3)

    for i in range(1000):
        print("Iteration: ", i)
        dn.train(X, Y)

# def iris_svm_momentum():
#     print("Initializing net for Iris dataset classification problem. . .")
#     iris = load_iris()
#     X = iris.data
#     Y = iris.target
#
#     dn = DenseNet(input_dim=4, optim_config={"type": "momentum", "learning_rate": 0.01, "momentum":0.5}, loss_fn='svm')
#     dn.addlayer("ReLU", 4)
#     dn.addlayer("ReLU", 6)
#     dn.addlayer("ReLU", 3)
#
#     for i in range(1000):
#         print("Iteration: ", i)
#         dn.train(X, Y)

#two_bit_xor_sigmoid()
test_iris.py 文件源码 项目:knnimpute 作者: hammerlab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _check_iris_imputation(_impute_fn):
    iris = load_iris()
    X = iris.data
    # some values missing only
    rng = np.random.RandomState(0)
    X_some_missing = X.copy()
    mask = np.abs(X[:, 2] - rng.normal(loc=5.5, scale=.7, size=X.shape[0])) < .6
    X_some_missing[mask, 3] = np.NaN
    X_imputed = _impute_fn(X_some_missing, np.isnan(X_some_missing), k=3)
    mean_abs_diff = np.mean(np.abs(X - X_imputed))
    print(mean_abs_diff)
    assert mean_abs_diff < 0.05, "Difference too big: %0.4f" % mean_abs_diff
sklearn_usage.py 文件源码 项目:base_function 作者: Rockyzsu 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def lession_4():
    iris = datasets.load_iris()
    iris_X = iris.data
    iris_y = iris.target
    # print iris_X[:2]
    # print iris_y
    X_train,X_test,y_train,y_test = train_test_split(iris_X,iris_y,test_size=0.3)
    knn = KNeighborsClassifier()
    knn.fit(X_train,y_train)
    print knn.predict(X_test)
    print y_test

# dataset usage
dummy_model.py 文件源码 项目:app-skeleton 作者: rragundez 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def train_model(split=.25):
    """Tran model based on the iris dataset.

    This will split the iris dataset into train and test set, will
    train a Random Forest CLassifier and fit the trained model to
    the test dataset.
    In addition the confusion matrix and features importance will be
    calculated.

    Args:
        split (float): Fraction of observations in the test dataset.

    Returns:
        RandomForestClassifier: Trained model.
        pandas.DataFrame: Confusion matrix.
        dictionary: Features importance
    """
    iris = load_iris()
    all_data = pd.DataFrame(iris.data, columns=iris.feature_names)
    features = all_data.columns.str.replace('\s+', '_').str.replace('\W+', '')
    all_data['species'] = pd.Categorical.from_codes(iris.target,
                                                    iris.target_names)
    train, test = train_test_split(all_data, test_size=split)
    clf = RandomForestClassifier(n_jobs=1)
    clf.fit(train.drop('species', axis=1), train.species)
    preds = clf.predict(test.drop('species', axis=1))
    conf_matrix = pd.crosstab(test['species'], preds,
                              rownames=['Actual Species'],
                              colnames=['Predicted Species'])
    f_importances = list(zip(train.drop('species', axis=1).columns,
                             clf.feature_importances_))
    return clf, conf_matrix, f_importances, features
dash_clustering_iris.py 文件源码 项目:WebAppEx 作者: karlafej 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self):
        self.iris = datasets.load_iris()
        self.count = 3
        self.xaxis = 0
        self.yaxis = 1
spyre_clustering.py 文件源码 项目:WebAppEx 作者: karlafej 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self):
        self.iris = datasets.load_iris()
test.py 文件源码 项目:stacked_generalization 作者: fukatani 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def setUp(self):
        iris = datasets.load_iris()
        rng = check_random_state(0)
        perm = rng.permutation(iris.target.size)
        iris.data = iris.data[perm]
        iris.target = iris.target[perm]
        self.iris = iris
test.py 文件源码 项目:stacked_generalization 作者: fukatani 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def setUp(self):
        iris = datasets.load_iris()
        rng = check_random_state(0)
        iris.data = iris.data
        iris.target = iris.target
        self.iris = iris
        for csv_file in glob.glob("*.csv"):
            os.remove(csv_file)
multi_class_lda.py 文件源码 项目:ML-From-Scratch 作者: eriklindernoren 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def main():
    # Load the dataset
    data = datasets.load_iris()
    X = normalize(data.data)
    y = data.target

    # Project the data onto the 2 primary components
    multi_class_lda = MultiClassLDA()
    multi_class_lda.plot_in_2d(X, y, title="LDA")


问题


面经


文章

微信
公众号

扫码关注公众号