python类load_iris()的实例源码

main.py 文件源码 项目:MachineLearningBasics 作者: zoebchhatriwala 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def main():

    iris = datasets.load_iris()
    x = iris.data
    y = iris.target

    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=.5)

    clrTree = tree.DecisionTreeClassifier()
    clrTree = clrTree.fit(x_train, y_train)
    outTree = clrTree.predict(x_test)

    clrKN = KNeighborsClassifier()
    clrKN = clrKN.fit(x_train, y_train)
    outKN = clrKN.predict(x_test)

    # Prediction accuracy
    print("Accuracy for Decision Tree Classifier: " + str(accuracy_score(y_test, outTree)*100)+"%")
    print("Accuracy for KNeighbors Classifier: " + str(accuracy_score(y_test, outKN)*100)+"%")
main.py 文件源码 项目:MachineLearningBasics 作者: zoebchhatriwala 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def main():

    iris = datasets.load_iris()
    x = iris.data
    y = iris.target

    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=.5)
    clr = NewClassifier()
    clr.fit(x_train, y_train)
    prediction = clr.predict(x_test)

    # Prediction accuracy
    print("Accuracy: " + str(accuracy_score(y_test, prediction) * 100) + "%")


# Run main
test_pipeline.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_pipeline_transform():
    # Test whether pipeline works with a transformer at the end.
    # Also test pipeline.transform and pipeline.inverse_transform
    iris = load_iris()
    X = iris.data
    pca = PCA(n_components=2, svd_solver='full')
    pipeline = Pipeline([('pca', pca)])

    # test transform and fit_transform:
    X_trans = pipeline.fit(X).transform(X)
    X_trans2 = pipeline.fit_transform(X)
    X_trans3 = pca.fit_transform(X)
    assert_array_almost_equal(X_trans, X_trans2)
    assert_array_almost_equal(X_trans, X_trans3)

    X_back = pipeline.inverse_transform(X_trans)
    X_back2 = pca.inverse_transform(X_trans)
    assert_array_almost_equal(X_back, X_back2)
main.py 文件源码 项目:MachineLearningBasics 作者: zoebchhatriwala 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def main():
    iris = load_iris()
    test_idx = [0, 50, 100]

    # training Data
    train_target = np.delete(iris.target, test_idx)
    train_data = np.delete(iris.data, test_idx, axis=0)

    # testing data
    test_target = iris.target[test_idx]
    test_data = iris.data[test_idx]

    # Train Classifier
    clf = tree.DecisionTreeClassifier()
    clf = clf.fit(train_data, train_target)

    print(clf.predict(test_data))


# Run main
test_impute.py 文件源码 项目:skutil 作者: tgsmith61591 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_bagged_imputer_classification():
    iris = load_iris()

    # make DF, add species col
    X = pd.DataFrame.from_records(data=iris.data, columns=iris.feature_names)
    X['species'] = iris.target

    # shuffle...
    X = shuffle_dataframe(X)

    # set random indices to be null.. 15% should be good
    rands = np.random.rand(X.shape[0])
    mask = rands > 0.85
    X['species'].iloc[mask] = np.nan

    # define imputer, assert no missing
    imputer = BaggedCategoricalImputer(cols=['species'])
    y = imputer.fit_transform(X)
    assert y['species'].isnull().sum() == 0, 'expected no null...'

    # now test with a different estimator
    imputer = BaggedCategoricalImputer(cols=['species'], base_estimator=RandomForestClassifier())
    y = imputer.fit_transform(X)
    assert y['species'].isnull().sum() == 0, 'expected no null...'
test_searchgrid.py 文件源码 项目:searchgrid 作者: jnothman 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_make_grid_search():
    X, y = load_iris(return_X_y=True)
    lr = LogisticRegression()
    svc = set_grid(SVC(), kernel=['poly'], degree=[2, 3])
    gs1 = make_grid_search(lr, cv=5)  # empty grid
    gs2 = make_grid_search(svc, cv=5)
    gs3 = make_grid_search([lr, svc], cv=5)
    for gs, n_results in [(gs1, 1), (gs2, 2), (gs3, 3)]:
        gs.fit(X, y)
        assert gs.cv == 5
        assert len(gs.cv_results_['params']) == n_results

    svc_mask = gs3.cv_results_['param_root'] == svc
    assert svc_mask.sum() == 2
    assert gs3.cv_results_['param_root__degree'][svc_mask].tolist() == [2, 3]
    assert gs3.cv_results_['param_root'][~svc_mask].tolist() == [lr]
decision_tree_classifier.py 文件源码 项目:ML-From-Scratch 作者: eriklindernoren 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def main():

    print ("-- Classification Tree --")

    data = datasets.load_iris()
    X = data.data
    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    clf = ClassificationTree()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ("Accuracy:", accuracy)

    Plot().plot_in_2d(X_test, y_pred, 
        title="Decision Tree", 
        accuracy=accuracy, 
        legend_labels=data.target_names)
linear_discriminant_analysis.py 文件源码 项目:ML-From-Scratch 作者: eriklindernoren 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def main():
    # Load the dataset
    data = datasets.load_iris()
    X = data.data
    y = data.target

    # Three -> two classes
    X = X[y != 2]
    y = y[y != 2]

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

    # Fit and predict using LDA
    lda = LDA()
    lda.fit(X_train, y_train)
    y_pred = lda.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ("Accuracy:", accuracy)

    Plot().plot_in_2d(X_test, y_pred, title="LDA", accuracy=accuracy)
logistic_regression.py 文件源码 项目:ML-From-Scratch 作者: eriklindernoren 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def main():
    # Load dataset
    data = datasets.load_iris()
    X = normalize(data.data[data.target != 0])
    y = data.target[data.target != 0]
    y[y == 1] = 0
    y[y == 2] = 1

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, seed=1)

    clf = LogisticRegression(gradient_descent=True)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)
    print ("Accuracy:", accuracy)

    # Reduce dimension to two using PCA and plot the results
    Plot().plot_in_2d(X_test, y_pred, title="Logistic Regression", accuracy=accuracy)
gradient_boosting_classifier.py 文件源码 项目:ML-From-Scratch 作者: eriklindernoren 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def main():

    print ("-- Gradient Boosting Classification --")

    data = datasets.load_iris()
    X = data.data
    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    clf = GradientBoostingClassifier()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ("Accuracy:", accuracy)


    Plot().plot_in_2d(X_test, y_pred, 
        title="Gradient Boosting", 
        accuracy=accuracy, 
        legend_labels=data.target_names)
xgboost.py 文件源码 项目:ML-From-Scratch 作者: eriklindernoren 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def main():

    print ("-- XGBoost --")

    data = datasets.load_iris()
    X = data.data
    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, seed=2)  

    clf = XGBoost()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ("Accuracy:", accuracy)

    Plot().plot_in_2d(X_test, y_pred, 
        title="XGBoost", 
    accuracy=accuracy, 
    legend_labels=data.target_names)
GBDT_solver.py 文件源码 项目:tpai_comp 作者: luuuyi 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test():
    iris = load_iris()  
    #print iris
    #print iris['target'].shape  
    gbdt=GradientBoostingRegressor(n_estimators=1000, max_depth=4) 
    gbdt.fit(iris.data[:120],iris.target[:120])

    #Save GBDT Model
    joblib.dump(gbdt, 'GBDT.model') 

    predict = gbdt.predict(iris.data[:120])
    total_err = 0
    for i in range(len(predict)):
        print predict[i],iris.target[i]
        err = predict[i] - iris.target[i]
        total_err += err * err
    print 'Training Error: %f' % (total_err / len(predict))

    pred = gbdt.predict(iris.data[120:])
    error = 0
    for i in range(len(pred)):
        print pred[i],iris.target[i+120]
        err = pred[i] - iris.target[i+120]
        error += err * err
    print 'Test Error: %f' % (error / len(pred))
profiler.py 文件源码 项目:ADMM-NeuralNetwork 作者: r3kall 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_iris(rng=42, tst_size=0.3):
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target

    X = iris_normalisation(X)

    X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                        test_size=tst_size,
                                                        random_state=rng)

    trg_train = np.zeros((3, len(y_train)), dtype='uint8')
    for e in range(trg_train.shape[1]):
        v = y_train[e]
        trg_train[v, e] = 1

    trg_test = np.zeros((3, len(y_test)), dtype='uint8')
    for e in range(trg_test.shape[1]):
        v = y_test[e]
        trg_test[v, e] = 1

    trn = Instance(X_train.T, trg_train)
    tst = Instance(X_test.T, trg_test)
    return trn, tst
test_mlp_classifier.py 文件源码 项目:muffnn 作者: civisanalytics 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_cross_val_predict():
    # Make sure it works in cross_val_predict for multiclass.

    X, y = load_iris(return_X_y=True)
    y = LabelBinarizer().fit_transform(y)
    X = StandardScaler().fit_transform(X)

    mlp = MLPClassifier(n_epochs=10,
                        solver_kwargs={'learning_rate': 0.05},
                        random_state=4567).fit(X, y)

    cv = KFold(n_splits=4, random_state=457, shuffle=True)
    y_oos = cross_val_predict(mlp, X, y, cv=cv, method='predict_proba')
    auc = roc_auc_score(y, y_oos, average=None)

    assert np.all(auc >= 0.96)
11.6 feature_selection_bagging.py 文件源码 项目:ML-note 作者: JasonK93 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_RFECV():
    '''
    test the method of RFECV
    :return:  None
    '''
    iris=load_iris()
    X=iris.data
    y=iris.target
    estimator=LinearSVC()
    selector=RFECV(estimator=estimator,cv=3)
    selector.fit(X,y)
    print("N_features %s"%selector.n_features_)
    print("Support is %s"%selector.support_)
    print("Ranking %s"%selector.ranking_)
    print("Grid Scores %s"%selector.grid_scores_)
test_few.py 文件源码 项目:few 作者: lacava 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_few_classification():
    """test_few.py: tests default classification settings"""
    np.random.seed(42)
    X, y = load_iris(return_X_y=True)
    train,test = train_test_split(np.arange(X.shape[0]), train_size=0.75,
                                  test_size=0.25)
    few = FEW(classification=True,population_size='1x',generations=10)
    few.fit(X[train],y[train])

    print('train score:', few.score(X[train],y[train]))
    print('test score:', few.score(X[test],y[test]))

    # test boolean output
    few = FEW(classification=True,otype='b',population_size='2x',
              seed_with_ml=False,generations=10)
    np.random.seed(42)
    few.fit(X[train],y[train])

    print('train score:', few.score(X[train],y[train]))
    print('test score:', few.score(X[test],y[test]))
    few.print_model()
test_base.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_base():
    # Check BaseEnsemble methods.
    ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=3)

    iris = load_iris()
    ensemble.fit(iris.data, iris.target)
    ensemble.estimators_ = []  # empty the list and create estimators manually

    ensemble._make_estimator()
    ensemble._make_estimator()
    ensemble._make_estimator()
    ensemble._make_estimator(append=False)

    assert_equal(3, len(ensemble))
    assert_equal(3, len(ensemble.estimators_))

    assert_true(isinstance(ensemble[0], Perceptron))
test_validation.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_cross_val_score_mask():
    # test that cross_val_score works with boolean masks
    svm = SVC(kernel="linear")
    iris = load_iris()
    X, y = iris.data, iris.target
    kfold = KFold(5)
    scores_indices = cross_val_score(svm, X, y, cv=kfold)
    kfold = KFold(5)
    cv_masks = []
    for train, test in kfold.split(X, y):
        mask_train = np.zeros(len(y), dtype=np.bool)
        mask_test = np.zeros(len(y), dtype=np.bool)
        mask_train[train] = 1
        mask_test[test] = 1
        cv_masks.append((train, test))
    scores_masks = cross_val_score(svm, X, y, cv=cv_masks)
    assert_array_equal(scores_indices, scores_masks)
test_validation.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_cross_val_score_precomputed():
    # test for svm with precomputed kernel
    svm = SVC(kernel="precomputed")
    iris = load_iris()
    X, y = iris.data, iris.target
    linear_kernel = np.dot(X, X.T)
    score_precomputed = cross_val_score(svm, linear_kernel, y)
    svm = SVC(kernel="linear")
    score_linear = cross_val_score(svm, X, y)
    assert_array_equal(score_precomputed, score_linear)

    # Error raised for non-square X
    svm = SVC(kernel="precomputed")
    assert_raises(ValueError, cross_val_score, svm, X, y)

    # test error is raised when the precomputed kernel is not array-like
    # or sparse
    assert_raises(ValueError, cross_val_score, svm,
                  linear_kernel.tolist(), y)
test_validation.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_cross_val_score_with_score_func_classification():
    iris = load_iris()
    clf = SVC(kernel='linear')

    # Default score (should be the accuracy score)
    scores = cross_val_score(clf, iris.data, iris.target, cv=5)
    assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2)

    # Correct classification score (aka. zero / one score) - should be the
    # same as the default estimator score
    zo_scores = cross_val_score(clf, iris.data, iris.target,
                                scoring="accuracy", cv=5)
    assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2)

    # F1 score (class are balanced so f1_score should be equal to zero/one
    # score
    f1_scores = cross_val_score(clf, iris.data, iris.target,
                                scoring="f1_weighted", cv=5)
    assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2)
test_cross_validation.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_cross_val_score_mask():
    # test that cross_val_score works with boolean masks
    svm = SVC(kernel="linear")
    iris = load_iris()
    X, y = iris.data, iris.target
    cv_indices = cval.KFold(len(y), 5)
    scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices)
    cv_indices = cval.KFold(len(y), 5)
    cv_masks = []
    for train, test in cv_indices:
        mask_train = np.zeros(len(y), dtype=np.bool)
        mask_test = np.zeros(len(y), dtype=np.bool)
        mask_train[train] = 1
        mask_test[test] = 1
        cv_masks.append((train, test))
    scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks)
    assert_array_equal(scores_indices, scores_masks)
test_cross_validation.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def test_cross_val_score_precomputed():
    # test for svm with precomputed kernel
    svm = SVC(kernel="precomputed")
    iris = load_iris()
    X, y = iris.data, iris.target
    linear_kernel = np.dot(X, X.T)
    score_precomputed = cval.cross_val_score(svm, linear_kernel, y)
    svm = SVC(kernel="linear")
    score_linear = cval.cross_val_score(svm, X, y)
    assert_array_equal(score_precomputed, score_linear)

    # Error raised for non-square X
    svm = SVC(kernel="precomputed")
    assert_raises(ValueError, cval.cross_val_score, svm, X, y)

    # test error is raised when the precomputed kernel is not array-like
    # or sparse
    assert_raises(ValueError, cval.cross_val_score, svm,
                  linear_kernel.tolist(), y)
test_cross_validation.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_cross_val_score_with_score_func_classification():
    iris = load_iris()
    clf = SVC(kernel='linear')

    # Default score (should be the accuracy score)
    scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5)
    assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2)

    # Correct classification score (aka. zero / one score) - should be the
    # same as the default estimator score
    zo_scores = cval.cross_val_score(clf, iris.data, iris.target,
                                     scoring="accuracy", cv=5)
    assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2)

    # F1 score (class are balanced so f1_score should be equal to zero/one
    # score
    f1_scores = cval.cross_val_score(clf, iris.data, iris.target,
                                     scoring="f1_weighted", cv=5)
    assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2)
test_cross_validation.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def test_safe_split_with_precomputed_kernel():
    clf = SVC()
    clfp = SVC(kernel="precomputed")

    iris = load_iris()
    X, y = iris.data, iris.target
    K = np.dot(X, X.T)

    cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0)
    tr, te = list(cv)[0]

    X_tr, y_tr = cval._safe_split(clf, X, y, tr)
    K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr)
    assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T))

    X_te, y_te = cval._safe_split(clf, X, y, te, tr)
    K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr)
    assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T))
test_base.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_score_sample_weight():
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.tree import DecisionTreeRegressor
    from sklearn import datasets

    rng = np.random.RandomState(0)

    # test both ClassifierMixin and RegressorMixin
    estimators = [DecisionTreeClassifier(max_depth=2),
                  DecisionTreeRegressor(max_depth=2)]
    sets = [datasets.load_iris(),
            datasets.load_boston()]

    for est, ds in zip(estimators, sets):
        est.fit(ds.data, ds.target)
        # generate random sample weights
        sample_weight = rng.randint(1, 10, size=len(ds.target))
        # check that the score with and without sample weights are different
        assert_not_equal(est.score(ds.data, ds.target),
                         est.score(ds.data, ds.target,
                                   sample_weight=sample_weight),
                         msg="Unweighted and weighted scores "
                             "are unexpectedly equal")
test_pipeline.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_fit_predict_on_pipeline():
    # test that the fit_predict method is implemented on a pipeline
    # test that the fit_predict on pipeline yields same results as applying
    # transform and clustering steps separately
    iris = load_iris()
    scaler = StandardScaler()
    km = KMeans(random_state=0)

    # first compute the transform and clustering step separately
    scaled = scaler.fit_transform(iris.data)
    separate_pred = km.fit_predict(scaled)

    # use a pipeline to do the transform and clustering in one step
    pipe = Pipeline([('scaler', scaler), ('Kmeans', km)])
    pipeline_pred = pipe.fit_predict(iris.data)

    assert_array_almost_equal(pipeline_pred, separate_pred)
test_naive_bayes.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_discretenb_provide_prior_with_partial_fit():
    # Test whether discrete NB classes use provided prior
    # when using partial_fit

    iris = load_iris()
    iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split(
        iris.data, iris.target, test_size=0.4, random_state=415)

    for cls in [BernoulliNB, MultinomialNB]:
        for prior in [None, [0.3, 0.3, 0.4]]:
            clf_full = cls(class_prior=prior)
            clf_full.fit(iris.data, iris.target)
            clf_partial = cls(class_prior=prior)
            clf_partial.partial_fit(iris_data1, iris_target1,
                                    classes=[0, 1, 2])
            clf_partial.partial_fit(iris_data2, iris_target2)
            assert_array_almost_equal(clf_full.class_log_prior_,
                                      clf_partial.class_log_prior_)
test_randomized_l1.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_randomized_logistic():
    # Check randomized sparse logistic regression
    iris = load_iris()
    X = iris.data[:, [0, 2]]
    y = iris.target
    X = X[y != 2]
    y = y[y != 2]

    F, _ = f_classif(X, y)

    scaling = 0.3
    clf = RandomizedLogisticRegression(verbose=False, C=1., random_state=42,
                                       scaling=scaling, n_resampling=50,
                                       tol=1e-3)
    X_orig = X.copy()
    feature_scores = clf.fit(X, y).scores_
    assert_array_equal(X, X_orig)   # fit does not modify X
    assert_array_equal(np.argsort(F), np.argsort(feature_scores))

    clf = RandomizedLogisticRegression(verbose=False, C=[1., 0.5],
                                       random_state=42, scaling=scaling,
                                       n_resampling=50, tol=1e-3)
    feature_scores = clf.fit(X, y).scores_
    assert_array_equal(np.argsort(F), np.argsort(feature_scores))
test_unsupervised.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_correct_labelsize():
    # Assert 1 < n_labels < n_samples
    dataset = datasets.load_iris()
    X = dataset.data

    # n_labels = n_samples
    y = np.arange(X.shape[0])
    assert_raises_regexp(ValueError,
                         'Number of labels is %d\. Valid values are 2 '
                         'to n_samples - 1 \(inclusive\)' % len(np.unique(y)),
                         silhouette_score, X, y)

    # n_labels = 1
    y = np.zeros(X.shape[0])
    assert_raises_regexp(ValueError,
                         'Number of labels is %d\. Valid values are 2 '
                         'to n_samples - 1 \(inclusive\)' % len(np.unique(y)),
                         silhouette_score, X, y)
estimator_checks.py 文件源码 项目:Parallel-SGD 作者: angadgill 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def check_non_transformer_estimators_n_iter(name, estimator,
                                            multi_output=False):
    # Check if all iterative solvers, run for more than one iteration

    iris = load_iris()
    X, y_ = iris.data, iris.target

    if multi_output:
        y_ = np.reshape(y_, (-1, 1))

    set_random_state(estimator, 0)
    if name == 'AffinityPropagation':
        estimator.fit(X)
    else:
        estimator.fit(X, y_)

    # HuberRegressor depends on scipy.optimize.fmin_l_bfgs_b
    # which doesn't return a n_iter for old versions of SciPy.
    if not (name == 'HuberRegressor' and estimator.n_iter_ is None):
        assert_greater(estimator.n_iter_, 0)


问题


面经


文章

微信
公众号

扫码关注公众号