python类io()的实例源码

util.py 文件源码 项目:vizgen 作者: uva-graphics 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __enter__(self):
        if not self.verbose:
            self.old_stdout = sys.stdout
            self.old_stderr = sys.stderr
            sys.stdout = self.stdout = io.StringIO()
            sys.stderr = self.stderr = io.StringIO()
data_generation.py 文件源码 项目:IM2TXT 作者: aayushP 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def load_images(image_files, vgg, pl_images):
  dataset = np.ndarray(shape=(len(image_files), feat_len), dtype=np.float32)
  image_index = 0
  for image in image_files:
    try:
        if not tf.gfile.Exists(image):
            tf.logging.fatal('File does not exist %s', image)
        image_data = skimage.io.imread(image)
        image_data = image_data / 255.0
        batch = np.ndarray(shape=(1, image_data.shape[0], image_data.shape[1], image_data.shape[2]), dtype=np.float32)
        batch[0, :, :, :] = image_data
        feed_dict = {pl_images: batch}

        with tf.Session() as sess:
            with tf.device("/cpu:0"):
                feat = sess.run(vgg.conv5_4, feed_dict=feed_dict)

        feat.resize(feat_len,refcheck=False)
        dataset[image_index, :] = feat
        image_index += 1

    except IOError as e:
      print('Could not read:', image, ':', e, '- it\'s ok, skipping.')

  dataset = dataset[0:image_index, :]

  print('Full dataset tensor:', dataset.shape)
  return dataset
utils.py 文件源码 项目:deep-style-transfer 作者: albertlai 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def load_image(path, image_h, image_w, zoom=False):
    # load image
    img = skimage.io.imread(path)
    if img.ndim < 3:
        img = skimage.color.gray2rgb(img)
    # we crop image from center
    ratio = float(image_h) / image_w
    height = int(img.shape[0])
    width = int(img.shape[1])
    yy = 0
    xx = 0
    if height > width * ratio: #too tall
        yy = int(height - width * ratio) // 2
        height = int(width * ratio)
    else: # too wide
        xx = int(width - height / ratio) // 2
        width = int(height / ratio)
    if zoom:
        yy += int(height / 6)
        xx += int(height / 6)
        height = int(height * 2/ 3)
        width = int(width * 2 / 3)
    crop_img = img[yy: yy + height, xx: xx + width]
    # resize 
    resized_img = skimage.transform.resize(crop_img, (image_h, image_w), preserve_range=True)
    centered_img = resized_img - MEAN_VALUES
    return centered_img
utils.py 文件源码 项目:deep-style-transfer 作者: albertlai 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def write_image(path, image, verbose=False):
  img = image[0] + MEAN_VALUES
  if verbose:
      print("%f - %f" % (np.min(img), np.max(img)))
  img = np.clip(img, 0, 255).astype('uint8')
  skimage.io.imsave(path, img)

# returns the top1 string
utils.py 文件源码 项目:deep-style-transfer 作者: albertlai 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test():
    img = skimage.io.imread("./test_data/starry_night.jpg")
    ny = 300
    nx = img.shape[1] * ny / img.shape[0]
    img = skimage.transform.resize(img, (ny, nx))
    skimage.io.imsave("./test_data/test/output.jpg", img)
Inputs.py 文件源码 项目:Tensorflow-SegNet 作者: tkuanlun350 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_all_test_data(im_list, la_list):
  images = []
  labels = []
  index = 0
  for im_filename, la_filename in zip(im_list, la_list):
    im = np.array(skimage.io.imread(im_filename), np.float32)
    im = im[np.newaxis]
    la = skimage.io.imread(la_filename)
    la = la[np.newaxis]
    la = la[...,np.newaxis]
    images.append(im)
    labels.append(la)
  return images, labels
image.py 文件源码 项目:hdrnet 作者: google 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def imread(path):
  return skimage.io.imread(path)
image.py 文件源码 项目:hdrnet 作者: google 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def imwrite(im, path):
  skimage.io.imsave(path, im)
utils.py 文件源码 项目:ssd_tensorflow 作者: seann999 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test():
    img = skimage.io.imread("./test_data/starry_night.jpg")
    ny = 300
    nx = img.shape[1] * ny / img.shape[0]
    img = skimage.transform.resize(img, (ny, nx))
    skimage.io.imsave("./test_data/test/output.jpg", img)
tutorial_inceptionV3_tfslim.py 文件源码 项目:tensorlayer-chinese 作者: shorxp 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def load_image(path):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 299, 299
    resized_img = skimage.transform.resize(crop_img, (299, 299))
    return resized_img
tutorial_vgg19.py 文件源码 项目:tensorlayer-chinese 作者: shorxp 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def load_image(path):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (224, 224))
    return resized_img
tutorial_inceptionV3_tfslim.py 文件源码 项目:tensorlayer-chinese 作者: shorxp 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def load_image(path):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (299, 299))
    return resized_img
tutorial_vgg19.py 文件源码 项目:tensorlayer-chinese 作者: shorxp 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def load_image(path):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (224, 224))
    return resized_img
saliency.py 文件源码 项目:ssta-captioning 作者: Yugnaynehc 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_saliency_ft(img):

    # Saliency map calculation based on:

    if isinstance(img, str):
        img = skimage.io.imread(img)

    img_rgb = img_as_float(img)

    img_lab = skimage.color.rgb2lab(img_rgb)

    mean_val = np.mean(img_rgb, axis=(0, 1))

    kernel_h = (1.0 / 16.0) * np.array([[1, 4, 6, 4, 1]])
    kernel_w = kernel_h.transpose()

    blurred_l = scipy.signal.convolve2d(img_lab[:, :, 0], kernel_h, mode='same')
    blurred_a = scipy.signal.convolve2d(img_lab[:, :, 1], kernel_h, mode='same')
    blurred_b = scipy.signal.convolve2d(img_lab[:, :, 2], kernel_h, mode='same')

    blurred_l = scipy.signal.convolve2d(blurred_l, kernel_w, mode='same')
    blurred_a = scipy.signal.convolve2d(blurred_a, kernel_w, mode='same')
    blurred_b = scipy.signal.convolve2d(blurred_b, kernel_w, mode='same')

    im_blurred = np.dstack([blurred_l, blurred_a, blurred_b])

    sal = np.linalg.norm(mean_val - im_blurred, axis=2)
    sal_max = np.max(sal)
    sal_min = np.min(sal)
    sal = 255 * ((sal - sal_min) / (sal_max - sal_min))
    return sal
inputs.py 文件源码 项目:TF-SegNet 作者: mathildor 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def get_all_test_data(im_list, la_list):
    images = []
    labels = []
    index = 0
    for im_filename, la_filename in zip(im_list, la_list):
        im = np.array(skimage.io.imread(im_filename), np.float32)
        im = im[np.newaxis]
        la = skimage.io.imread(la_filename)
        la = la[np.newaxis]
        la = la[...,np.newaxis]
        images.append(im)
        labels.append(la)
    return images, labels
utils.py 文件源码 项目:nn-compression 作者: anithapk 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test():
    img = skimage.io.imread("./test_data/starry_night.jpg")
    ny = 300
    nx = img.shape[1] * ny / img.shape[0]
    img = skimage.transform.resize(img, (ny, nx))
    skimage.io.imsave("./test_data/test/output.jpg", img)
inputReader.py 文件源码 项目:FCN-TensorFlow 作者: shoaibahmed 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def saveLastBatchResults(self, outputImages, isTrain=True):
        """Saves the results of last retrieved image batch
        Args:
          outputImages: 4D Numpy array [batchSize, H, W, numClasses]
          isTrain: If the last batch was training batch
        Returns:
          None
        """
        if isTrain:
            imageNames = [self.imageList[index] for index in self.indices]
        else:
            imageNames = [self.imageListTest[index] for index in self.indices]

        # Iterate over each image name and save the results
        for i in xrange(0, self.options.batchSize):
            imageName = imageNames[i].split('/')
            imageName = imageName[-1]
            if isTrain:
                imageName = self.options.imagesOutputDirectory + '/' + 'train_' + imageName[:-4] + '_prob' + imageName[-4:]
            else:
                imageName = self.options.imagesOutputDirectory + '/' + 'test_' + imageName[:-4] + '_prob' + imageName[-4:]
            # print(imageName)

            # Save foreground probability
            im = np.squeeze(outputImages[i, :, :, 1] * 255)
            im = im.astype(np.uint8)    # Convert image from float to unit8 for saving
            skimage.io.imsave(imageName, im)
data_loader.py 文件源码 项目:visual-question-answering-tensorflow 作者: lmelvix 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def getImage(datapath, imageID, purpose='train'):
    name_3 = str(imageID)
    name_2 = '0' * (12-len(name_3))
    name_1 = 'COCO_' + purpose + '2014_'
    fileName = name_1 + name_2 + name_3 + '.jpg'
    filepath = join(datapath,fileName)
    img = skimage.io.imread(filepath)
    return(img)
utils.py 文件源码 项目:Texture_Synthesis_with_tensorflow 作者: jackie840129 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def show_image(img):
    skimage.io.imshow(img)
    skimage.io.show()

# [height, width, depth]
utils.py 文件源码 项目:Texture_Synthesis_with_tensorflow 作者: jackie840129 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def load_image(path):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    print( "Original Image Shape: ", img.shape)
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (256, 256))
    print( "Resize Image Shape: ", resized_img.shape)
    return resized_img


问题


面经


文章

微信
公众号

扫码关注公众号