python类io()的实例源码

image_processing.py 文件源码 项目:TAC-GAN 作者: dashayushman 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def load_image_array_flowers(image_file, image_size):
    img = skimage.io.imread(image_file)
    # GRAYSCALE
    if len(img.shape) == 2:
        img_new = np.ndarray( (img.shape[0], img.shape[1], 3), dtype = 'uint8')
        img_new[:,:,0] = img
        img_new[:,:,1] = img
        img_new[:,:,2] = img
        img = img_new

    img_resized = skimage.transform.resize(img, (image_size, image_size))

    # FLIP HORIZONTAL WIRH A PROBABILITY 0.5
    if random.random() > 0.5:
        img_resized = np.fliplr(img_resized)


    return img_resized.astype('float32')
utils.py 文件源码 项目:Automatic-Image-Colorization 作者: Armour 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def load_image(path):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (224, 224))
    return resized_img


# returns the top1 string
utils.py 文件源码 项目:Automatic-Image-Colorization 作者: Armour 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def load_image2(path, height=None, width=None):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))
pyfrp_img_module.py 文件源码 项目:PyFRAP 作者: alexblaessle 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def loadImg(fn,enc,dtype='float'):

    """Loads image from filename fn with encoding enc and returns it as with given dtype.

    Args:
        fn (str): File path.
        enc (str): Image encoding, e.g. 'uint16'.

    Keyword Args:
        dtype (str): Datatype of pixels of returned image.

    Returns:
        numpy.ndarray: Loaded image.
    """

    #Load image
    img = skimage.io.imread(fn).astype(enc)

    #Getting img values
    img=img.real
    img=img.astype(dtype)

    return img
dataSampling.py 文件源码 项目:adascan_public 作者: amlankar 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def flowList(xFileNames, yFileNames):
    '''
    (x/y)fileNames: List of the fileNames in order to get the flows from
    '''

    frameList = []

    if (len(xFileNames) != len(yFileNames)):
        print 'XFILE!=YFILE ERROR: In', xFileNames[0]

    for i in range(0, min(len(xFileNames), len(yFileNames))):
        imgX = io.imread(xFileNames[i])
        imgY = io.imread(yFileNames[i])
        frameList.append(np.dstack((imgX, imgY)))

    frameList = np.array(frameList)
    return frameList
mandelbrot.py 文件源码 项目:vizgen 作者: uva-graphics 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def mandelbrot_color(matrix, output_file_name):
    """Generates a color version of the Mandelbrot Set

    Writes its output file to output_file_name

     Args:
        matrix: np.array, 2D array representing the mandelbrot set
        output_file_name: string, filename to write image to
    """

    # I wasn't quite sure on how to do the coloring, so I just interpolated
    # between two colors:
    color1 = np.array([[.2], [.2], [.8]])
    color2 = np.array([[1], [.2], [.5]])

    color_img = np.zeros((matrix.shape[0], matrix.shape[1], 3))

    color_img[:, :, 0] = color1[0] + matrix[:, :] * (color2[0] - color1[0])
    color_img[:, :, 1] = color1[1] + matrix[:, :] * (color2[1] - color1[1])
    color_img[:, :, 2] = color1[2] + matrix[:, :] * (color2[2] - color1[2])

    print("\nWriting image to:", output_file_name)
    skimage.io.imsave(output_file_name, color_img)
util.py 文件源码 项目:vizgen 作者: uva-graphics 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def write_img(out_img, out_filename, do_clip=True):
    """Writes out_img to out_filename
    """
    if use_4channel and len(out_img.shape) == 3 and out_img.shape[2] == 4:
        out_img = out_img[:,:,:3]

    assert out_img is not None, 'expected out_img to not be None'
    out_img = numpy.clip(out_img, 0, 1) if do_clip else out_img
    if is_pypy:
        out_img = numpy.asarray(out_img*255, 'uint8')
        if len(out_img.shape) == 2:
            mode = 'L'
        elif len(out_img.shape) == 3:
            if out_img.shape[2] == 3:
                mode = 'RGB'
            elif out_img.shape[2] == 4:
                mode = 'RGBA'
            else:
                raise ValueError('unknown color image mode')
        else:
            raise ValueError('unknown number of dimensions for image')

        I = Image.frombytes(mode, (out_img.shape[1], out_img.shape[0]), out_img.tobytes())
        I.save(out_filename)
    else:
        try:
            skimage.io.imsave(out_filename, out_img)
        except:
            print('Caught exception while saving to {}: image shape is {}, min: {}, max: {}'.format(out_filename, out_img.shape, out_img.min(), out_img.max()))
            raise
utils.py 文件源码 项目:deep-style-transfer 作者: albertlai 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_image2(path, height=None, width=None):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))
utils.py 文件源码 项目:ssd_tensorflow 作者: seann999 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def load_image(path, size=224):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (size, size))
    return resized_img


# returns the top1 string
utils.py 文件源码 项目:ssd_tensorflow 作者: seann999 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def load_image2(path, height=None, width=None):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))
utils.py 文件源码 项目:Texture-Synthesis 作者: mohamedkeid 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def load_image(path):
    # Load image [height, width, depth]
    img = skimage.io.imread(path) / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()

    # Crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    shape = list(img.shape)

    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    resized_img = skimage.transform.resize(crop_img, (shape[0], shape[1]))
    return resized_img, shape


# Return a resized numpy array of an image specified by its path
utils.py 文件源码 项目:Texture-Synthesis 作者: mohamedkeid 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def load_image2(path, height=None, width=None):
    # Load image
    img = skimage.io.imread(path) / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))


# Render the generated image given a tensorflow session and a variable image (x)
utils.py 文件源码 项目:nn-compression 作者: anithapk 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def load_image2(path, height=None, width=None):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))
utils.py 文件源码 项目:Dual-Attention-Network 作者: changywtw 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def load_image(path):
    # load image
    img = skimage.io.imread(path)  
    img = img / 255.0 
    assert (0 <= img).all() and (img <= 1.0).all()
    # print "Original Image Shape: ", img.shape
    # we crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    crop_img = img[yy: yy + short_edge, xx: xx + short_edge] 
    # resize to 224, 224
    resized_img = skimage.transform.resize(crop_img, (224, 224))  
    if len(resized_img.shape)<3:
        resized_img = skimage.color.gray2rgb(resized_img)  
    return resized_img


# returns the top1 string
utils.py 文件源码 项目:Dual-Attention-Network 作者: changywtw 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def load_image2(path, height=None, width=None):
    # load image
    img = skimage.io.imread(path)
    img = img / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))
utils.py 文件源码 项目:Style-Transfer-Algorithm 作者: mohamedkeid 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def load_image(path):
    # Load image [height, width, depth]
    img = skimage.io.imread(path) / 255.0
    assert (0 <= img).all() and (img <= 1.0).all()

    # Crop image from center
    short_edge = min(img.shape[:2])
    yy = int((img.shape[0] - short_edge) / 2)
    xx = int((img.shape[1] - short_edge) / 2)
    shape = list(img.shape)

    crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
    resized_img = skimage.transform.resize(crop_img, (shape[0], shape[1]))
    return resized_img, shape


# Return a resized numpy array of an image specified by its path
utils.py 文件源码 项目:Style-Transfer-Algorithm 作者: mohamedkeid 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_image2(path, height=None, width=None):
    # Load image
    img = skimage.io.imread(path) / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))


# Render the generated image given a tensorflow session and a variable image (x)
image_processing.py 文件源码 项目:text-to-image 作者: paarthneekhara 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def load_image_array(image_file, image_size):
    img = skimage.io.imread(image_file)
    # GRAYSCALE
    if len(img.shape) == 2:
        img_new = np.ndarray( (img.shape[0], img.shape[1], 3), dtype = 'uint8')
        img_new[:,:,0] = img
        img_new[:,:,1] = img
        img_new[:,:,2] = img
        img = img_new

    img_resized = skimage.transform.resize(img, (image_size, image_size))

    # FLIP HORIZONTAL WIRH A PROBABILITY 0.5
    if random.random() > 0.5:
        img_resized = np.fliplr(img_resized)


    return img_resized.astype('float32')
util.py 文件源码 项目:ISeeNN 作者: sunshaoyan 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def load_image(path, height=None, width=None):
    img = skimage.io.imread(path)
    if len(img.shape) == 2:
        img = skimage.color.gray2rgb(img)
    img = img / 255.0
    if height is not None and width is not None:
        ny = height
        nx = width
    elif height is not None:
        ny = height
        nx = img.shape[1] * ny / img.shape[0]
    elif width is not None:
        nx = width
        ny = img.shape[0] * nx / img.shape[1]
    else:
        ny = img.shape[0]
        nx = img.shape[1]
    return skimage.transform.resize(img, (ny, nx))
image.py 文件源码 项目:hdrnet_legacy 作者: mgharbi 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def imread(path):
  return skimage.io.imread(path)
image.py 文件源码 项目:hdrnet_legacy 作者: mgharbi 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def imwrite(im, path):
  skimage.io.imsave(path, im)
image_processing.py 文件源码 项目:TAC-GAN 作者: dashayushman 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def load_image_array(image_file, image_size,
                     image_id, data_dir='Data/datasets/mscoco/train2014',
                     mode='train'):
    img = None
    if os.path.exists(image_file):
        #print('found' + image_file)
        img = skimage.io.imread(image_file)
    else:
        print('notfound' + image_file)
        img = skimage.io.imread('http://mscoco.org/images/%d' % (image_id))
        img_path = os.path.join(data_dir, 'COCO_%s2014_%.12d.jpg' % ( mode,
                                                                      image_id))
        skimage.io.imsave(img_path, img)

    # GRAYSCALE
    if len(img.shape) == 2:
        img_new = np.ndarray( (img.shape[0], img.shape[1], 3), dtype = 'uint8')
        img_new[:,:,0] = img
        img_new[:,:,1] = img
        img_new[:,:,2] = img
        img = img_new

    img_resized = skimage.transform.resize(img, (image_size, image_size))

    # FLIP HORIZONTAL WIRH A PROBABILITY 0.5
    if random.random() > 0.5:
        img_resized = np.fliplr(img_resized)

    return img_resized.astype('float32')
image_processing.py 文件源码 项目:TAC-GAN 作者: dashayushman 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def load_image_inception(image_file, image_size=128):
    img = skimage.io.imread(image_file)
    # GRAYSCALE
    if len(img.shape) == 2:
        img_new = np.ndarray((img.shape[0], img.shape[1], 3), dtype='uint8')
        img_new[:, :, 0] = img
        img_new[:, :, 1] = img
        img_new[:, :, 2] = img
        img = img_new

    if image_size != 0:
        img = skimage.transform.resize(img, (image_size, image_size), mode='reflect')

    return img.astype('int32')
utils.py 文件源码 项目:Automatic-Image-Colorization 作者: Armour 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test():
    img = skimage.io.imread("./test_data/starry_night.jpg")
    ny = 300
    nx = img.shape[1] * ny / img.shape[0]
    img = skimage.transform.resize(img, (ny, nx))
    skimage.io.imsave("./test_data/test/output.jpg", img)
pyfrp_img_module.py 文件源码 项目:PyFRAP 作者: alexblaessle 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def saveImg(img,fn,enc="uint16",scale=True,maxVal=None):

    """Saves image as tif file.

    ``scale`` triggers the image to be scaled to either the maximum
    range of encoding or ``maxVal``. See also :py:func:`scaleToEnc`.

    Args:
        img (numpy.ndarray): Image to save.
        fn (str): Filename.

    Keyword Args:   
        enc (str): Encoding of image.
        scale (bool): Scale image.
        maxVal (int): Maximum value to which image is scaled.

    Returns:
        str: Filename.

    """

    #Fill nan pixels with 0
    img=np.nan_to_num(img)

    #Scale img
    if scale:
        img=scaleToEnc(img,enc,maxVal=maxVal)
    else:
        #Convert to encoding
        img=img.astype(enc)



    skimage.io.imsave(fn,img)


    return fn
dataset.py 文件源码 项目:image_captioning 作者: bityangke 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def check_files(image_dir):
    print("Checking image files in %s" %(image_dir))
    files = os.listdir(image_dir)
    images = [os.path.join(image_dir, f) for f in files if f.lower().endswith('.jpg')]
    good_imgs = []
    for img in images:
        try:
           x = skimage.img_as_float(skimage.io.imread(img)).astype(np.float32)
           good_imgs.append(img)
        except:
           print("Image %s is corrupted and will be removed." %(img))
           os.remove(img)
    good_files = [img.split(os.sep)[-1] for img in good_imgs]
    return good_files
feats.py 文件源码 项目:image_captioning 作者: bityangke 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, deploy=vgg_deploy, model=vgg_model, mean=vgg_mean, scale_dim=[224, 224], image_dim=[224, 224], isotropic=False):
        caffe.set_mode_gpu()
        caffe.Net.__init__(self, deploy, model, caffe.TEST)

        self.scale_dim = np.array(scale_dim)
        self.image_dim = np.array(image_dim)
        self.isotropic = isotropic

        self.transformer = caffe.io.Transformer({'data':self.blobs['data'].data.shape})
        self.transformer.set_transpose('data', (2,0,1))
        self.transformer.set_mean('data', np.load(mean).mean(1).mean(1))
        self.transformer.set_raw_scale('data', 255)
        self.transformer.set_channel_swap('data', (2,1,0))
feats.py 文件源码 项目:image_captioning 作者: bityangke 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def load_image(self, image_dir):
        image = skimage.img_as_float(skimage.io.imread(image_dir)).astype(np.float32)
        assert image.ndim == 2 or image.ndim == 3
        if image.ndim == 2:
            image = image[:, :, np.newaxis]
            image = np.tile(image, (1, 1, 3))
        elif image.shape[2] > 3:
            image = image[:, :, :3]
        return image
mandelbrot.py 文件源码 项目:vizgen 作者: uva-graphics 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def mandelbrot_gray(matrix, output_file_name):
    """Generates a grayscale version of the Mandelbrot Set

    Writes its output file to output_file_name

    Args:
        matrix: np.array, 2D array representing the mandelbrot set
        output_file_name: string, filename to write image to
    """

    print("\nWriting image to:", output_file_name)
    skimage.io.imsave(output_file_name, matrix)
util.py 文件源码 项目:vizgen 作者: uva-graphics 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def read_img(in_filename, grayscale=False, extra_info={}):
    """Returns the image saved at in_filename as a numpy array.

    If grayscale is True, converts from 3D RGB image to 2D grayscale image.
    """
    if is_pypy:
        ans = Image.open(in_filename)
        height = ans.height
        width = ans.width
        channels = len(ans.getbands())
        if ans.mode == 'I':
            numpy_mode = 'uint32'
            maxval = 65535.0
        elif ans.mode in ['L', 'RGB', 'RGBA']:
            numpy_mode = 'uint8'
            maxval = 255.0
        else:
            raise ValueError('unknown mode')
        ans = numpy.fromstring(ans.tobytes(), numpy_mode).reshape((height, width, channels))
        ans = ans/maxval
        if grayscale and (len(ans.shape) == 3 and ans.shape[2] == 3):
            ans = ans[:,:,0]*0.2125 + ans[:,:,1]*0.7154 + ans[:,:,2]*0.0721
        if len(ans.shape) == 3 and ans.shape[2] == 1:
            ans = ans[:,:,0]
        return ans
    else:
        ans = skimage.io.imread(in_filename)
        if ans.dtype == numpy.int32:    # Work around scikit-image bug #1680
            ans = numpy.asarray(ans, numpy.uint16)
        ans = skimage.img_as_float(ans)
        if grayscale:
            ans = skimage.color.rgb2gray(ans)
#        print('here', use_4channel, len(ans.shape) == 3, ans.shape[2] == 3)
        if use_4channel and len(ans.shape) == 3 and ans.shape[2] == 3:
            ans = numpy.dstack((ans,) + (numpy.ones((ans.shape[0], ans.shape[1], 1)),))
            extra_info['originally_3channel'] = True
    return ans


问题


面经


文章

微信
公众号

扫码关注公众号