python类img_as_float()的实例源码

CancerImageAnalyzer.py 文件源码 项目:CancerImageAnalyzer2 作者: byeungchun 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def loadRawImage(_rawImageFile="null"):
    if _rawImageFile == "null":
        #rawImageFile = "BF_position020200_time0001.tif"
        _rawImageFile = "./test1.tif"
    global rawImageFile
    rawImageFile =  _rawImageFile
    rawImg = imread(_rawImageFile)
    rawImgFloat = skimage.img_as_float(rawImg)
    return rawImgFloat
CancerImageAnalyzer.py 文件源码 项目:CancerImageAnalyzer2 作者: byeungchun 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def loadPreprocessingImage(preprocessingFile):
    preprocessingImg = imread(preprocessingFile)
    preprocessingImg = skimage.img_as_float(preprocessingImg)
    return preprocessingImg
optical_flow_double.py 文件源码 项目:vizgen 作者: uva-graphics 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def main():
    if Display:
        cap = cv2.VideoCapture(0)
        out = cv2.VideoWriter('output.avi', -1, 2.0, (600, 440))
        count = 0

        while(count < 20):
            ret, frame1 = cap.read()
            ret, frame2 = cap.read()

            frame1 = skimage.img_as_float(frame1)
            frame2 = skimage.img_as_float(frame2)

            output_img = optical_flow_ssd(frame1, frame2)
            out.write(output_img)

            cv2.imshow('frame', output_img)
            count = count + 1

            if cv2.waitKey(1) & 0xFF == ord('q'):
                cap.release()
                out.release()
                cv2.destroyAllWindows()
                break
    else:
        test()
util.py 文件源码 项目:vizgen 作者: uva-graphics 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def read_img(in_filename, grayscale=False, extra_info={}):
    """Returns the image saved at in_filename as a numpy array.

    If grayscale is True, converts from 3D RGB image to 2D grayscale image.
    """
    if is_pypy:
        ans = Image.open(in_filename)
        height = ans.height
        width = ans.width
        channels = len(ans.getbands())
        if ans.mode == 'I':
            numpy_mode = 'uint32'
            maxval = 65535.0
        elif ans.mode in ['L', 'RGB', 'RGBA']:
            numpy_mode = 'uint8'
            maxval = 255.0
        else:
            raise ValueError('unknown mode')
        ans = numpy.fromstring(ans.tobytes(), numpy_mode).reshape((height, width, channels))
        ans = ans/maxval
        if grayscale and (len(ans.shape) == 3 and ans.shape[2] == 3):
            ans = ans[:,:,0]*0.2125 + ans[:,:,1]*0.7154 + ans[:,:,2]*0.0721
        if len(ans.shape) == 3 and ans.shape[2] == 1:
            ans = ans[:,:,0]
        return ans
    else:
        ans = skimage.io.imread(in_filename)
        if ans.dtype == numpy.int32:    # Work around scikit-image bug #1680
            ans = numpy.asarray(ans, numpy.uint16)
        ans = skimage.img_as_float(ans)
        if grayscale:
            ans = skimage.color.rgb2gray(ans)
#        print('here', use_4channel, len(ans.shape) == 3, ans.shape[2] == 3)
        if use_4channel and len(ans.shape) == 3 and ans.shape[2] == 3:
            ans = numpy.dstack((ans,) + (numpy.ones((ans.shape[0], ans.shape[1], 1)),))
            extra_info['originally_3channel'] = True
    return ans
seam_carving.py 文件源码 项目:Seam-Carving-using-DP 作者: arpitmathur89 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def remove_seam(img, seam):
    img = img_as_float(img)
    img = img.tolist()
    seam = seam.tolist()
    for i in range(0, len(img)):
        del img[i][seam[i]]
    plt.imshow(img)
    print "Width of the image is: ", len(img[0])
    return img
seam_carving.py 文件源码 项目:Seam-Carving-using-DP 作者: arpitmathur89 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def remove_multiple_pixels(img, count):
    for i in range(0, count):
        img = remove_seam(img, find_seam(img))
        img = img_as_float(img)
    plt.imshow(img)
save_images.py 文件源码 项目:mcv-m5 作者: david-vazquez 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def my_label2rgboverlay(labels, colors, image, bglabel=None,
                        bg_color=(0., 0., 0.), alpha=0.2):
    image_float = gray2rgb(img_as_float(rgb2gray(image)))
    label_image = my_label2rgb(labels, colors, bglabel=bglabel,
                               bg_color=bg_color)
    output = image_float * alpha + label_image * (1 - alpha)
    return output


# Save 3 images (Image, mask and result)
palette.py 文件源码 项目:clitorisvulgaris 作者: fhoehl 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def find_dominant_colors(image):
    """Cluster the colors of the image in CLUSTER_NUMBER of clusters. Returns
    an array of dominant colors reverse sorted by cluster size.
    """

    array = img_as_float(fromimage(image))

    # Reshape from MxNx4 to Mx4 array
    array = array.reshape(scipy.product(array.shape[:2]), array.shape[2])

    # Remove transparent pixels if any (channel 4 is alpha)
    if array.shape[-1] > 3:
        array = array[array[:, 3] == 1]

    # Finding centroids (centroids are colors)
    centroids, _ = kmeans(array, CLUSTER_NUMBER)

    # Allocate pixel to a centroid cluster
    observations, _ = vq(array, centroids)

    # Calculate the number of pixels in a cluster
    histogram, _ = scipy.histogram(observations, len(centroids))

    # Sort centroids by number of pixels in their cluster
    sorted_centroids = sorted(zip(centroids, histogram),
                              key=lambda x: x[1],
                              reverse=True)

    sorted_colors = tuple((couple[0] for couple in sorted_centroids))

    return sorted_colors
bounce.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def fix_image(image_filename):
    image = scipy.misc.imread(test_filenames[i], flatten=False)
    image = scipy.misc.imresize(image, [image_size, image_size])
    image = skimage.img_as_float(image)
    image = np.swapaxes(image, 0, 2)
    image = np.swapaxes(image, 1, 2)    
    return image
create_kanji_dataset.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def augment_kanji(kanji, augmentation_idx):
    angle = np.random.randint(0,360) * (np.pi / 180.0)
    dist = np.random.randint(0,aug_translation_max_dist)
    x = int(math.cos(angle) * dist)
    y = int(math.sin(angle) * dist)


    augmented = np.roll(kanji, [y, x], axis=[0, 1])

    #angle_step = (np.pi * 2.0) / float(num_augmentations+1)
    #angle = angle_step + (angle_step * float(augmentation_idx))
    #angle *= (180.0 / np.pi) # degrees
    rot_angle = np.random.randint(-2, 2)
    augmented = scipy.misc.imrotate(augmented, rot_angle, interp="bilinear")

    pad_max = 12
    pad_w = np.random.randint(0, pad_max)
    pad_h = pad_w
    augmented = np.pad(augmented, ((pad_h, pad_h), (pad_w, pad_w)), mode="constant")
    augmented = scipy.misc.imresize(augmented, [kanji_height, kanji_width])

    augmented = skimage.img_as_float(augmented).astype(np.float32)

    noise = np.random.uniform(low=0.1, high=0.5)
    augmented += np.random.uniform(low=-noise, high=noise, size=augmented.shape)
    augmented = np.maximum(0.0, np.minimum(augmented, 1.0))

    return augmented
create_kanji_dataset.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def rasterize_kanji(kanji, weight, output_file):
    kanji = kanji[0:4] # strip extra stuff like footnotes off kanji

    prop = fm.FontProperties(fname="ipam.ttc", size=70)

    plt.figure(figsize=(1, 1))
    plt.text(0, 0, kanji, ha='center', va='center', fontproperties=prop)
    plt.xlim(-0.4, 0.1)
    plt.ylim(-0.1, 0.1)
    plt.axis("off")

    #plt.savefig(output_file)
    #image = scipy.misc.imread(output_file, flatten=True)

    buf = io.BytesIO()
    plt.savefig(buf, format="png")
    buf.seek(0)
    image = PIL.Image.open(buf).convert(mode="L")
    buf.close()
    image = np.asarray(image, dtype=np.uint8)
    plt.close()

    image = scipy.misc.imresize(image, [kanji_height, kanji_width])
    image = skimage.img_as_float(image).astype(np.float32)

    image = 1.0 - image # make the background black and the text white

    if (weight == "bold"):
        erosion_size = 5
    elif (weight == "normal"):
        erosion_size = 3
    else:
        erosion_size = 0

    if (erosion_size > 0):
        kernel = np.ones((erosion_size, erosion_size), np.float32)
        image = cv2.dilate(image, kernel, iterations=1)
        scipy.misc.imsave(output_file, (1.0 - image))

    return image
heatmap_model.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def dump_heatmaps(filename, images, heatmaps, antialias=True, multiply=True):
    images = images.numpy()
    heatmaps = heatmaps.numpy()
    all_masked = np.zeros(images.shape)
    num_images = images.shape[0]
    for i in range(num_images):
        image = images[i] / 255.0
        heatmap = heatmaps[i]

        # resize the heatmap to be the same size as the image
        if (antialias):
            interp = "bilinear"
        else:
            interp = "nearest"
        heatmap = img_as_float(scipy.misc.imresize(heatmap, [image.shape[1], image.shape[2]], interp=interp))

        # tile the heatmap in each component so it's HxWx3 like the image
        heatmap = heatmap.reshape(1, heatmap.shape[0], heatmap.shape[1])
        heatmap = np.tile(heatmap, (3,1,1))

        # mask the image by the heatmap
        if multiply:
            masked = image * heatmap
        else:
            masked = image + heatmap

        all_masked[i] = masked

    vutils.save_image(torch.FloatTensor(all_masked), filename, normalize=True)
create_dataset.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def augment_image(image, augmentation_idx):
    image_height = image.shape[0]
    image_width = image.shape[1]

    if (image_width > hr_size):
        cropX = np.random.randint(0, image_width - hr_size)
    else:
        cropX = 0

    if (image_height > hr_size):
        cropY = np.random.randint(0, image_height - hr_size)
    else:
        cropY = 0

    hr_image = image[cropY:cropY+hr_size,cropX:cropX+hr_size,...]

    lr_image = scipy.misc.imresize(hr_image, [lr_size, lr_size], interp="bilinear")

    # scale low res back to high res so we can learn something other than scaling up the input
    lr_scaled = scipy.misc.imresize(lr_image, [hr_size, hr_size], interp="bilinear")

    # resizing changes to int, go back to float
    lr_image = skimage.img_as_float(lr_image)
    lr_scaled = skimage.img_as_float(lr_scaled)

    #scipy.misc.imsave("hr_" + str(augmentation_idx).zfill(5) + ".png", hr_image)
    #scipy.misc.imsave("hr_" + str(augmentation_idx).zfill(5) + "_small_.png", lr_image)
    #scipy.misc.imsave("hr_" + str(augmentation_idx).zfill(5) + "_scaled_.png", lr_scaled)    

    lr_image = np.swapaxes(lr_image, 0, 2)
    lr_image = np.swapaxes(lr_image, 1, 2)

    hr_image = np.swapaxes(hr_image, 0, 2)
    hr_image = np.swapaxes(hr_image, 1, 2)

    lr_scaled = np.swapaxes(lr_scaled, 0, 2)
    lr_scaled = np.swapaxes(lr_scaled, 1, 2)

    return lr_image, lr_scaled, hr_image
saveFeats.py 文件源码 项目:SceneUnderstanding_CIARP_2017 作者: verlab 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def read_caffe_img(path):
    return skimage.img_as_float(skimage.io.imread(path)).astype(np.float32).copy()
save_images.py 文件源码 项目:keras_zoo 作者: david-vazquez 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def my_label2rgboverlay(labels, colors, image, bglabel=None,
                        bg_color=(0., 0., 0.), alpha=0.2):
    image_float = gray2rgb(img_as_float(rgb2gray(image)))
    label_image = my_label2rgb(labels, colors, bglabel=bglabel,
                               bg_color=bg_color)
    output = image_float * alpha + label_image * (1 - alpha)
    return output


# Save 3 images (Image, mask and result)
cnn_util.py 文件源码 项目:Handwritten_recognition_tensorflow 作者: sanjanaramprasad 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def crop_image(x, target_height=227, target_width=227, as_float=True):
    image = skimage.io.imread(x)
    if as_float:
        image = skimage.img_as_float(image).astype(np.float32)

    print(len(image.shape))
    if len(image.shape) == 2:
        image = np.tile(image[:, :, None], 3)
    elif len(image.shape) == 4:
        image = image[:, :, :, 0]

    height, width, rgb = image.shape
    if width == height:
        resized_image = np.resize(image, (target_height,target_width))

    elif height < width:
        resized_image = np.resize(image, (int(width * float(target_height)/height), target_width))
        cropping_length = int((resized_image.shape[1] - target_height) / 2)
        resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length]

    else:
        resized_image = np.resize(image, (target_height, int(height * float(target_width) / width)))
        cropping_length = int((resized_image.shape[0] - target_width) / 2)
        resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:]

    return np.resize(resized_image, (target_height, target_width))
data_augmentation.py 文件源码 项目:dataset_loaders 作者: fvisin 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def my_label2rgboverlay(labels, cmap, image, bglabel=None,
                        bg_color=(0., 0., 0.), alpha=0.2):
    '''Superimpose a mask over an image

    Convert a label mask to RGB applying a color map and superimposing it
    over an image as a transparent overlay'''
    image_float = gray2rgb(img_as_float(rgb2gray(image)))
    label_image = my_label2rgb(labels, cmap, bglabel=bglabel,
                               bg_color=bg_color)
    output = image_float * alpha + label_image * (1 - alpha)
    return output
image_tfs.py 文件源码 项目:tanda 作者: HazyResearch 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def pil_to_np(x):
    """Converts from PIL.Image to np float format image"""
    x = np.asarray(x)
    if len(x.shape) == 2: 
        x = x[:,:,np.newaxis]
    return img_as_float(np.asarray(x))
oversample.py 文件源码 项目:CVtools 作者: Tyler-D 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def oversample(img, crop_ratio, horizon_flip=False, vertical_flip=False):
    """
    4 corner crops , horizonly flips and vertically flips
    Parameter:
    -------------
    img: h*w*c image; ndarray, dtype= np.float32
    crop_ratio: (crop_height_ratio, crop_width_ratio); tuple
    horizon_flip: flip the image horizonly;bool
    vertical_flip:

    Return:
    ------------
    crops: N*h*w*c images; ndarray
    """
    img_height = img.shape[0]
    img_width = img.shape[1]
    img_channel = img.shape[-1]
    crop_dims = (int(img_height * crop_ratio[0]), int(img_width * crop_ratio[1]))
    h_indices = (0, img_height - crop_dims[0])
    w_indices = (0, img_width - crop_dims[1])
    crop_idx = np.empty((4, 4), dtype=int)
    idx = 0
    for i in h_indices:
        for j in w_indices:
            #crop_idx : (ymin, xmin, ymax, xmax)
            crop_idx[idx] = (i, j, i + crop_dims[0], j + crop_dims[1])
            idx+=1
    num = 4
    if horizon_flip:
        num += 4
    if vertical_flip:
        num += 4
    crops = np.empty((num, crop_dims[0], crop_dims[1], img_channel), dtype=np.float32)
    idx = 0
    for crop in crop_idx:
        crops[idx] = img[crop[0]:crop[2], crop[1]:crop[3], :]
        img_crop = crops[idx]
        idx += 1
        if horizon_flip:
            crops[idx] = np.flipud(img_crop)
            idx += 1
        if vertical_flip:
            crops[idx] = np.fliplr(img_crop)
            idx += 1
    return crops


#test
# img = skimage.img_as_float(skimage.io.imread("./test.jpg")).astype(np.float32)
# # img = skimage.io.imread("./test.jpg")
# print img.shape
# print type(img)
# crops = oversample(img,(0.8,0.8),True,True)
# print crops.shape
# for idx in xrange(crops.shape[0]):
    # skimage.io.imsave(os.path.join("./", str(idx) + ".jpg"), crops[idx, :, :, :])
test.py 文件源码 项目:heart-segm 作者: grihabor 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def get_output(i):
    image = load_image('../../data/sbdd/dataset', 'img_{}'.format(i))
    res = net.forward()

    score = res['score_output2'].transpose((2, 3, 1, 0))
    label = res['label'].transpose((2, 3, 1, 0))
    print('score shape:', score.shape)
    print('label shape:', label.shape)
    score = score[:, :, :, 0]
    label = label[:, :, 0, 0]
    print(score.shape)
    print(label.shape, label.dtype)

    width = 3
    height = 2

    image = img_as_float(np.reshape(image[:, :, 0], image.shape[:2]))

    plt.subplot(height, width, 1)
    plt.title('target image')
    plt.imshow(image, cmap='gray')
    plt.subplot(height, width, 2)
    plt.title('network output\nlabel 0')
    plt.imshow(score[:, :, 0], cmap='gray')
    plt.subplot(height, width, 3)
    plt.title('network output\nlabel 1')
    plt.imshow(score[:, :, 1], cmap='gray')

    prob_threshold = 0.5
    binary_score = (score[:, :, 1] > prob_threshold).astype(np.float)

    plt.subplot(height, width, 4)
    plt.title('prob > {}'.format(prob_threshold))
    plt.imshow(binary_score, cmap='gray')

    print(image, image.shape)

    plt.subplot(height, width, 5)
    plt.title('image + output')
    plt.imshow(image + binary_score, cmap='gray')

    plt.subplot(height, width, 6)
    plt.title('image + grand truth')
    plt.imshow(image + label, cmap='gray')
    plt.savefig('output/img_{}.png'.format(i), bbox_inches='tight')


问题


面经


文章

微信
公众号

扫码关注公众号