python类img_as_float()的实例源码

helpers.py 文件源码 项目:iterative_inference_segm 作者: adri-romsor 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def my_label2rgboverlay(labels, colors, image, alpha=0.2):
    """
    Generates image with segmentation labels on top

    Parameters
    ----------
    labels:  labels of one image (0, 1)
    colors:  colormap
    image:   image (0, 1, c), where c=3 (rgb)
    alpha: transparency
    """
    image_float = gray2rgb(img_as_float(rgb2gray(image) if
                                        image.shape[2] == 3 else
                                        np.squeeze(image)))
    label_image = my_label2rgb(labels, colors)
    output = image_float * alpha + label_image * (1 - alpha)
    return output
extract_RGB_feats.py 文件源码 项目:S2VT 作者: chenxinpeng 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def preprocess_frame(image, target_height=224, target_width=224):

    if len(image.shape) == 2:
        image = np.tile(image[:,:,None], 3)
    elif len(image.shape) == 4:
        image = image[:,:,:,0]

    image = skimage.img_as_float(image).astype(np.float32)
    height, width, rgb = image.shape
    if width == height:
        resized_image = cv2.resize(image, (target_height,target_width))

    elif height < width:
        resized_image = cv2.resize(image, (int(width * float(target_height)/height), target_width))
        cropping_length = int((resized_image.shape[1] - target_height) / 2)
        resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length]

    else:
        resized_image = cv2.resize(image, (target_height, int(height * float(target_width) / width)))
        cropping_length = int((resized_image.shape[0] - target_width) / 2)
        resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:]

    return cv2.resize(resized_image, (target_height, target_width))
inference_patches.py 文件源码 项目:DeepNet 作者: hok205 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def process_patches(images, net, transformer):
    """ Process a patch through the neural network and extract the predictions

    Args:
        images (array list): list of images to process (length = batch_size)
        net (obj): the Caffe Net
        transformer (obj): the Caffe Transformer for preprocessing
    """
    # caffe.io.load_image converts to [0,1], so our transformer sets it back to [0,255]
    # but the skimage lib already works with [0, 255] so we convert it to float with img_as_float
    data = np.zeros(net.blobs['data'].data.shape)
    for i in range(len(images)):
        data[i] = transformer.preprocess('data', img_as_float(images[i]))
    net.forward(data=data)
    output = net.blobs['conv1_1_D'].data[:len(images)]
    output = np.swapaxes(np.swapaxes(output, 1, 3), 1, 2)
    return output
inference.py 文件源码 项目:DeepNet 作者: hok205 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def process_patches(images, net, transformer):
    """ Process a patch through the neural network and extract the predictions

    Args:
        images (array list): list of images to process (length = batch_size)
        net (obj): the Caffe Net
        transformer (obj): the Caffe Transformer for preprocessing
    """
    # caffe.io.load_image converts to [0,1], so our transformer sets it back to [0,255]
    # but the skimage lib already works with [0, 255] so we convert it to float with img_as_float
    data = np.zeros(net.blobs['data'].data.shape)
    for i in range(len(images)):
        data[i] = transformer.preprocess('data', img_as_float(images[i]))
    net.forward(data=data)
    output = net.blobs['conv1_1_D'].data[:len(images)]
    output = np.swapaxes(np.swapaxes(output, 1, 3), 1, 2)
    return output
voc_utils.py 文件源码 项目:TF-Examples 作者: CharlesShang 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def load_img(self, img_filename):
        """
        Summary:
            Load image from the filename. Default is to load in color if
            possible.

        Args:
            img_name (string): string of the image name, relative to
                the image directory.

        Returns:
            np array of float32: an image as a numpy array of float32
        """
        if not img_filename.endswith('.jpg'):
            img_filename = os.path.join(self.img_dir, img_filename + '.jpg')
        else:
            img_filename = os.path.join(self.img_dir, img_filename)
        img = skimage.img_as_float(io.imread(
            img_filename)).astype(np.float32)
        if img.ndim == 2:
            img = img[:, :, np.newaxis]
        elif img.shape[2] == 4:
            img = img[:, :, :3]
        return img
caffe_image_features.py 文件源码 项目:neuralmonkey 作者: ufal 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def crop_image(x, target_height=227, target_width=227):
    image = skimage.img_as_float(skimage.io.imread(x)).astype(np.float32)

    if len(image.shape) == 2:
        image = np.tile(image[:,:,None], 3)
    elif len(image.shape) == 4:
        image = image[:,:,:,0]

    height, width, rgb = image.shape
    if width == height:
        resized_image = skimage.transform.resize(image, (target_height,target_width))

    elif height < width:
        resized_image = skimage.transform.resize(image, (int(width * float(target_height)/height), target_width))
        cropping_length = int((resized_image.shape[1] - target_height) / 2)
        resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length]

    else:
        resized_image = skimage.transform.resize(image, (target_height, int(height * float(target_width) / width)))
        cropping_length = int((resized_image.shape[0] - target_width) / 2)
        resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:]

    return skimage.transform.resize(resized_image, (target_height, target_width))
neural.py 文件源码 项目:ml-traffic 作者: Zepheus 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def postprocess(imgs, size, grayscale=False):
    print("Postprocessing images and resize (at %d)" % size)
    keyname = ('gray_%d' if grayscale else 'color_%d') % size
    for img in imgs:

        # Continue if already calculated
        if img.isSetByName(keyname):
            continue

        floatimg = img_as_float(img.image)
        floatimg = resize(floatimg, (size, size))
        if grayscale:
            floatimg = rgb2gray(floatimg)
        img.setByName(keyname, floatimg)  # expect to return floats


# Augment images
mnist_input.py 文件源码 项目:dcn.tf 作者: beopst 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def load_data(src,shuffle=True):
    """ Load data from directories.
    """

    imgs = [img for img in glob.glob(os.path.join(src,'*.png'))]

    x = np.zeros((len(imgs),100,100), dtype=np.float32)
    y = np.zeros(len(imgs), dtype=np.int64)

    for idx, img in enumerate(imgs):
        im = io.imread(img,1)
        im = img_as_float(im) # rescale from [0,255] to [0,1]

        label = int(img.split('/')[-1].split('.')[0].split('_')[-1])

        x[idx] = im
        y[idx] = label

    x = np.expand_dims(x,3)
    data = zip(x,y)

    if shuffle: random.shuffle(data)

    return data
edge_detector_cnn.py 文件源码 项目:nn-segmentation-for-lar 作者: cvdlab 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def predict_image(self, test_img):
        """
        predicts classes of input image
        :param test_img: filepath to image to predict on
        :param show: displays segmentation results
        :return: segmented result
        """
        img = np.array( rgb2gray( imread( test_img ).astype( 'float' ) ).reshape( 5, 216, 160 )[-2] ) / 256

        plist = []

        # create patches from an entire slice
        img_1 = adjust_sigmoid( img ).astype( float )
        edges_1 = adjust_sigmoid( img, inv=True ).astype( float )
        edges_2 = img_1
        edges_5_n = normalize( laplace( img_1 ) )
        edges_5_n = img_as_float( img_as_ubyte( edges_5_n ) )

        plist.append( extract_patches_2d( edges_1, (23, 23) ) )
        plist.append( extract_patches_2d( edges_2, (23, 23) ) )
        plist.append( extract_patches_2d( edges_5_n, (23, 23) ) )
        patches = np.array( zip( np.array( plist[0] ), np.array( plist[1] ), np.array( plist[2] ) ) )

        # predict classes of each pixel based on model
        full_pred = self.model.predict_classes( patches )
        fp1 = full_pred.reshape( 194, 138 )
        return fp1
cnn_util.py 文件源码 项目:sca-cnn 作者: zjuchenlong 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def crop_image(x, target_height=227, target_width=227):
    print x
    # skimage.img_as_float convert image np.ndarray into float type, with range (0, 1)
    image = skimage.img_as_float(skimage.io.imread(x)).astype(np.float32)

    if image.ndim == 2:
        image = image[:,:,np.newaxis][:,:,[0,0,0]]  # convert the gray image to rgb image

    height, width, rgb = image.shape
    if width == height:
        resized_image = cv2.resize(image, (target_width,target_height))

    elif height < width:
        resized_image = cv2.resize(image, (int(width * float(target_height)/height), target_height))
        cropping_length = int((resized_image.shape[1] - target_width) / 2)
        resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length]

    else:
        resized_image = cv2.resize(image, (target_width, int(height * float(target_width) / width)))
        cropping_length = int((resized_image.shape[0] - target_height) / 2)
        resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:]

    return cv2.resize(resized_image, (target_width, target_height))
find_kanji.py 文件源码 项目:MachineLearning 作者: timomernick 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test():
    test_filename = sys.argv[2]
    test_image = scipy.misc.imread(test_filename, flatten=True)
    test_image = scipy.misc.imresize(test_image, [background_height, background_width])
    test_image = skimage.img_as_float(test_image).astype(np.float32)

    model.load("find_kanji.tflearn")
    Y = model.predict(test_image.reshape([-1, background_height, background_width]))[0]

    print(Y)

    masked = np.square(Y)
    masked = scipy.misc.imresize(masked, [background_height, background_width])
    masked = test_image * masked
    scipy.misc.imsave("y.png", masked)

    #Y_indices = np.argsort(Y)[::-1]
lipnet_dataset.py 文件源码 项目:lipnet 作者: grishasergei 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _read_image(self, image_name):
        """
        Read image from self._path_to_img and perform any necessary preparation
        :param image_name: string, image name, which is added to self._path_to_img
        :return: numpy 2d array
        """
        filename = image_name
        try:
            img = io.imread(filename)
        except IOError:
            return None
        img = img_as_float(img)
        if len(img.shape) > 2:
            img = img[:, :, 0]
        img = resize(img, (self._image_width, self._image_height))
        img = img.reshape((self._image_width, self._image_height, 1))
        return img
dataset_images.py 文件源码 项目:lipnet 作者: grishasergei 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def read_image(image_name, img_size=None):
        """
        Read image from file
        :param image_name: string, image full name including path
        :param img_size: tuple of two ints, optional, specify if you want to resize image
        :return: numpy 2d array
        """
        filename = image_name
        try:
            img = io.imread(filename)
        except IOError:
            return None
        img = img_as_float(img)
        if len(img.shape) > 2:
            img = img[:, :, 0]

        if img_size is not None:
            img = resize(img, (img_size[0], img_size[1]))
            img = img.reshape((1, img_size[0], img_size[1]))

        return img
data_loader.py 文件源码 项目:VQG-tensorflow 作者: JamesChuanggg 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def crop_image(x, target_height=227, target_width=227, as_float=True):
    image = skimage.io.imread(x)
    if as_float:
        image = skimage.img_as_float(image).astype(np.float32)

    if len(image.shape) == 2:
        image = np.tile(image[:,:,None], 3)
    elif len(image.shape) == 4:
        image = image[:,:,:,0]

    height, width, rgb = image.shape
    if width == height:
        resized_image = cv2.resize(image, (target_height,target_width))

    elif height < width:
        resized_image = cv2.resize(image, (int(width * float(target_height)/height), target_width))
        cropping_length = int((resized_image.shape[1] - target_height) / 2)
        resized_image = resized_image[:,cropping_length:resized_image.shape[1] - cropping_length]

    else:
        resized_image = cv2.resize(image, (target_height, int(height * float(target_width) / width)))
        cropping_length = int((resized_image.shape[0] - target_width) / 2)
        resized_image = resized_image[cropping_length:resized_image.shape[0] - cropping_length,:]

    return cv2.resize(resized_image, (target_height, target_width))
dataset.py 文件源码 项目:tanda 作者: HazyResearch 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def load_cifar10_batch(fpath, one_hot=True, as_float=True):
    with open(fpath, 'rb') as f:
        # https://stackoverflow.com/questions/11305790
        data = cPickle.load(f, encoding='latin1')
        X = np.copy(data['data']).reshape(-1, 32*32, 3, order='F')
        X = X.reshape(-1, 32, 32, 3)
        Y = np.array(data['labels'])

        # Convert labels to one hot
        if one_hot:
            Y = to_one_hot(Y)

        # CONVERT TO FLOAT [0,1] TYPE HERE to be consistent with skimage TFs!!!
        # See: http://scikit-image.org/docs/dev/user_guide/data_types.html
        if as_float:
            X = img_as_float(X)
    return X, Y
segmentationClass.py 文件源码 项目:livespin 作者: biocompibens 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def findMaximaOnFG(self, param):
        self.defineFG(param)
        #self.smooth_corr()
        self.coorExtract = [0, 0]
        xmin, ymin = self.coorExtract


        img=self.candi
        img [self.FG ==0] =0

        im = img_as_float(img)
        image_max = ndimage.maximum_filter(im, size=10, mode='constant')
        coordinates = peak_local_max(im, min_distance=10)

        tep=np.zeros(self.candi.shape)
        for i,ide in enumerate(coordinates):
            tep[ide[0],ide[1]] = self.candi[ide[0],ide[1]]
        lbl = ndimage.label(tep)[0]
        centerc = np.round(ndimage.measurements.center_of_mass(tep, lbl, range(1,np.max(lbl)+1)))
        if centerc.size > 0:
            self.centersX = centerc[:,0].astype(int)
            self.centersY = centerc[:,1].astype(int)
        self.nComponents = len(self.centersX)
test_colorconv.py 文件源码 项目:FCN_train 作者: 315386775 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_rgb2hsv_conversion(self):
        rgb = img_as_float(self.img_rgb)[::16, ::16]
        hsv = rgb2hsv(rgb).reshape(-1, 3)
        # ground truth from colorsys
        gt = np.array([colorsys.rgb_to_hsv(pt[0], pt[1], pt[2])
                       for pt in rgb.reshape(-1, 3)]
                      )
        assert_almost_equal(hsv, gt)
test_colorconv.py 文件源码 项目:FCN_train 作者: 315386775 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_xyz_rgb_roundtrip(self):
        img_rgb = img_as_float(self.img_rgb)
        assert_array_almost_equal(xyz2rgb(rgb2xyz(img_rgb)), img_rgb)

    # RGB<->HED roundtrip with ubyte image
test_colorconv.py 文件源码 项目:FCN_train 作者: 315386775 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def test_hed_rgb_float_roundtrip(self):
        img_rgb = img_as_float(self.img_rgb)
        assert_array_almost_equal(hed2rgb(rgb2hed(img_rgb)), img_rgb)

    # RGB<->HDX roundtrip with ubyte image
test_colorconv.py 文件源码 项目:FCN_train 作者: 315386775 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_hdx_rgb_roundtrip(self):
        from skimage.color.colorconv import hdx_from_rgb, rgb_from_hdx
        img_rgb = img_as_float(self.img_rgb)
        conv = combine_stains(separate_stains(img_rgb, hdx_from_rgb),
                              rgb_from_hdx)
        assert_array_almost_equal(conv, img_rgb)

    # RGB to RGB CIE
test_colorconv.py 文件源码 项目:FCN_train 作者: 315386775 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_lab_rgb_roundtrip(self):
        img_rgb = img_as_float(self.img_rgb)
        assert_array_almost_equal(lab2rgb(rgb2lab(img_rgb)), img_rgb)

    # test matrices for xyz2luv and luv2xyz generated using
    # http://www.easyrgb.com/index.php?X=CALC
    # Note: easyrgb website displays xyz*100
test_colorconv.py 文件源码 项目:FCN_train 作者: 315386775 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_lab_lch_roundtrip(self):
        rgb = img_as_float(self.img_rgb)
        lab = rgb2lab(rgb)
        lab2 = lch2lab(lab2lch(lab))
        assert_array_almost_equal(lab2, lab)
test_colorconv.py 文件源码 项目:FCN_train 作者: 315386775 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_rgb_lch_roundtrip(self):
        rgb = img_as_float(self.img_rgb)
        lab = rgb2lab(rgb)
        lch = lab2lch(lab)
        lab2 = lch2lab(lch)
        rgb2 = lab2rgb(lab2)
        assert_array_almost_equal(rgb, rgb2)
test_colorconv.py 文件源码 项目:FCN_train 作者: 315386775 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def _get_lab0(self):
        rgb = img_as_float(self.img_rgb[:1, :1, :])
        return rgb2lab(rgb)[0, 0, :]
test_adapt_rgb.py 文件源码 项目:FCN_train 作者: 315386775 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_each_channel():
    filtered = edges_each(COLOR_IMAGE)
    for i, channel in enumerate(np.rollaxis(filtered, axis=-1)):
        expected = img_as_float(filters.sobel(COLOR_IMAGE[:, :, i]))
        assert_allclose(channel, expected)
transforms.py 文件源码 项目:KagglePlanetPytorch 作者: Mctigger 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def to_float(x):
    return img_as_float(x)
draw.py 文件源码 项目:skan 作者: jni 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _normalise_image(image, *, image_cmap=None):
    image = img_as_float(image)
    if image.ndim == 2:
        if image_cmap is None:
            image = gray2rgb(image)
        else:
            image = plt.get_cmap(image_cmap)(image)[..., :3]
    return image
create_lmdb.py 文件源码 项目:DeepNet 作者: hok205 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_image_lmdb(target, samples, bgr=BGR, normalize=False):
    """Create an image LMDB

    Args:
        target (str): path of the LMDB to be created
        samples (array list): list of images to be included in the LMDB
        bgr (bool): True if we want to reverse the channel order (RGB->BGR)
        normalize (bool): True if we want to normalize data in [0,1]
    """

    # Open the LMDB
    if os.path.isdir(target):
        raise Exception("LMDB already exists in {}, aborted.".format(target))
    db = lmdb.open(target, map_size=int(1e12))
    with db.begin(write=True) as txn:
        for idx, sample in tqdm(enumerate(samples), total=len(samples)):
            sample = io.imread(sample)
            # load image:
            if normalize:
                # - in [0,1.]float range
                sample = img_as_float(sample)
            if bgr:
                # - in BGR (reverse from RGB)
                sample = sample[:,:,::-1]
            # - in Channel x Height x Width order (switch from H x W x C)
            sample = sample.transpose((2,0,1))
            datum = caffe.io.array_to_datum(sample)
            # Write the data into the db
            txn.put('{:0>10d}'.format(idx), datum.SerializeToString())

    db.close()
dataset.py 文件源码 项目:image_captioning 作者: bityangke 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def check_files(image_dir):
    print("Checking image files in %s" %(image_dir))
    files = os.listdir(image_dir)
    images = [os.path.join(image_dir, f) for f in files if f.lower().endswith('.jpg')]
    good_imgs = []
    for img in images:
        try:
           x = skimage.img_as_float(skimage.io.imread(img)).astype(np.float32)
           good_imgs.append(img)
        except:
           print("Image %s is corrupted and will be removed." %(img))
           os.remove(img)
    good_files = [img.split(os.sep)[-1] for img in good_imgs]
    return good_files
feats.py 文件源码 项目:image_captioning 作者: bityangke 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def load_image(self, image_dir):
        image = skimage.img_as_float(skimage.io.imread(image_dir)).astype(np.float32)
        assert image.ndim == 2 or image.ndim == 3
        if image.ndim == 2:
            image = image[:, :, np.newaxis]
            image = np.tile(image, (1, 1, 3))
        elif image.shape[2] > 3:
            image = image[:, :, :3]
        return image


问题


面经


文章

微信
公众号

扫码关注公众号