python类ProjectiveTransform()的实例源码

perspective_transform.py 文件源码 项目:ml-traffic 作者: Zepheus 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def process(self, im):
        # if side is right flip so it becomes right
        if self.side != 'left':
            im = np.fliplr(im)

        # slope of the perspective
        slope = tan(radians(self.degrees))
        (h, w, _) = im.shape

        matrix_trans = np.array([[1, 0, 0],
                                [-slope/2, 1, slope * h / 2],
                                [-slope/w, 0, 1 + slope]])

        trans = ProjectiveTransform(matrix_trans)
        img_trans = warp(im, trans)
        if self.side != 'left':
            img_trans = np.fliplr(img_trans)
        return img_trans
cv.py 文件源码 项目:Physical-Image-Manipulation-Program 作者: philipptrenz 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def warp(img, corners):
    """
    Warpes an image by keeping its size, transforming the pixel data to 
    be distorted between the four corners.
    """

    width = len(img[0])
    height = len(img)

    src = numpy.array((
        corners['upper_left'],
        corners['lower_left'],
        corners['lower_right'],
        corners['upper_right']
    ))

    dst = numpy.array((
        (0, 0),
        (0, height),
        (width, height),
        (width, 0)
    ))

    tform = transform.ProjectiveTransform()
    tform.estimate(src, dst)

    return transform.warp(img, tform, output_shape=(height,width))
cv.py 文件源码 项目:Physical-Image-Manipulation-Program 作者: philipptrenz 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def scale_to_fit(img, size):
    """
    Scales an image to a given size by warping with no regard to the ratio.
    Returns: warped image as ndarray
    """

    width = len(img[0])
    height = len(img)

    src = numpy.array((
        (0, 0),
        (0, size[1]),
        (size[0], size[1]),
        (size[0], 0)
    ))


    dst = numpy.array((
        (0, 0),
        (0, height),
        (width, height),
        (width, 0)
    ))

    tform = transform.ProjectiveTransform()
    tform.estimate(src, dst)

    return transform.warp(img, tform, output_shape=(size[1],size[0]))





#########################################################################################################
#########################################################################################################
geometry.py 文件源码 项目:sudokuextract 作者: hbldh 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def warp_image_by_corner_points_projection(corner_points, image):
    """Given corner points of a Sudoku, warps original selection to a square image.

    :param corner_points:
    :type: corner_points: list
    :param image:
    :type image:
    :return:
    :rtype:

    """
    # Clarify by storing in named variables.
    top_left, top_right, bottom_left, bottom_right = np.array(corner_points)

    top_edge = np.linalg.norm(top_right - top_left)
    bottom_edge = np.linalg.norm(bottom_right - bottom_left)
    left_edge = np.linalg.norm(top_left - bottom_left)
    right_edge = np.linalg.norm(top_right - bottom_right)

    L = int(np.ceil(max([top_edge, bottom_edge, left_edge, right_edge])))
    src = np.array([top_left, top_right, bottom_left, bottom_right])
    dst = np.array([[0, 0], [L - 1, 0], [0, L - 1], [L - 1, L - 1]])

    tr = ProjectiveTransform()
    tr.estimate(dst, src)
    warped_image = warp(image, tr, output_shape=(L, L))
    out = resize(warped_image, (500, 500))

    return out
paint.py 文件源码 项目:hips 作者: hipspy 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def projection(self, tile: HipsTile) -> ProjectiveTransform:
        """Estimate projective transformation on a HiPS tile."""
        corners = tile.meta.skycoord_corners.to_pixel(self.geometry.wcs)
        src = np.array(corners).T.reshape((4, 2))
        dst = tile_corner_pixel_coordinates(tile.meta.width)
        pt = ProjectiveTransform()
        pt.estimate(src, dst)
        return pt
prepro.py 文件源码 项目:deepsleepnet 作者: akaraspt 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def projective_transform_by_points(x, src, dst, map_args={}, output_shape=None, order=1, mode='constant', cval=0.0, clip=True, preserve_range=False):
    """Projective transform by given coordinates, usually 4 coordinates. see `scikit-image <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`_.

    Parameters
    -----------
    x : numpy array
        An image with dimension of [row, col, channel] (default).
    src : list or numpy
        The original coordinates, usually 4 coordinates of (x, y).
    dst : list or numpy
        The coordinates after transformation, the number of coordinates is the same with src.
    map_args : dict, optional
        Keyword arguments passed to inverse_map.
    output_shape : tuple (rows, cols), optional
        Shape of the output image generated. By default the shape of the input image is preserved. Note that, even for multi-band images, only rows and columns need to be specified.
    order : int, optional
        The order of interpolation. The order has to be in the range 0-5:

        - 0 Nearest-neighbor
        - 1 Bi-linear (default)
        - 2 Bi-quadratic
        - 3 Bi-cubic
        - 4 Bi-quartic
        - 5 Bi-quintic
    mode : {‘constant’, ‘edge’, ‘symmetric’, ‘reflect’, ‘wrap’}, optional
        Points outside the boundaries of the input are filled according to the given mode. Modes match the behaviour of numpy.pad.
    cval : float, optional
        Used in conjunction with mode ‘constant’, the value outside the image boundaries.
    clip : bool, optional
        Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range.
    preserve_range : bool, optional
        Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float.

    Examples
    --------
    >>> Assume X is an image from CIFAR 10, i.e. shape == (32, 32, 3)
    >>> src = [[0,0],[0,32],[32,0],[32,32]]
    >>> dst = [[10,10],[0,32],[32,0],[32,32]]
    >>> x = projective_transform_by_points(X, src, dst)

    References
    -----------
    - `scikit-image : geometric transformations <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`_
    - `scikit-image : examples <http://scikit-image.org/docs/dev/auto_examples/index.html>`_
    """
    if type(src) is list:   # convert to numpy
        src = np.array(src)
    if type(dst) is list:
        dst = np.array(dst)
    if np.max(x)>1:         # convert to [0, 1]
        x = x/255

    m = transform.ProjectiveTransform()
    m.estimate(dst, src)
    warped = transform.warp(x, m,  map_args=map_args, output_shape=output_shape, order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range)
    return warped

# Numpy and PIL
prepro.py 文件源码 项目:tensorlayer-chinese 作者: shorxp 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def projective_transform_by_points(x, src, dst, map_args={}, output_shape=None, order=1, mode='constant', cval=0.0, clip=True, preserve_range=False):
    """Projective transform by given coordinates, usually 4 coordinates. see `scikit-image <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`_.

    Parameters
    -----------
    x : numpy array
        An image with dimension of [row, col, channel] (default).
    src : list or numpy
        The original coordinates, usually 4 coordinates of (width, height).
    dst : list or numpy
        The coordinates after transformation, the number of coordinates is the same with src.
    map_args : dict, optional
        Keyword arguments passed to inverse_map.
    output_shape : tuple (rows, cols), optional
        Shape of the output image generated. By default the shape of the input image is preserved. Note that, even for multi-band images, only rows and columns need to be specified.
    order : int, optional
        The order of interpolation. The order has to be in the range 0-5:

        - 0 Nearest-neighbor
        - 1 Bi-linear (default)
        - 2 Bi-quadratic
        - 3 Bi-cubic
        - 4 Bi-quartic
        - 5 Bi-quintic
    mode : {‘constant’, ‘edge’, ‘symmetric’, ‘reflect’, ‘wrap’}, optional
        Points outside the boundaries of the input are filled according to the given mode. Modes match the behaviour of numpy.pad.
    cval : float, optional
        Used in conjunction with mode ‘constant’, the value outside the image boundaries.
    clip : bool, optional
        Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range.
    preserve_range : bool, optional
        Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float.

    Examples
    --------
    >>> Assume X is an image from CIFAR 10, i.e. shape == (32, 32, 3)
    >>> src = [[0,0],[0,32],[32,0],[32,32]]     # [w, h]
    >>> dst = [[10,10],[0,32],[32,0],[32,32]]
    >>> x = projective_transform_by_points(X, src, dst)

    References
    -----------
    - `scikit-image : geometric transformations <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`_
    - `scikit-image : examples <http://scikit-image.org/docs/dev/auto_examples/index.html>`_
    """
    if type(src) is list:   # convert to numpy
        src = np.array(src)
    if type(dst) is list:
        dst = np.array(dst)
    if np.max(x)>1:         # convert to [0, 1]
        x = x/255

    m = transform.ProjectiveTransform()
    m.estimate(dst, src)
    warped = transform.warp(x, m,  map_args=map_args, output_shape=output_shape, order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range)
    return warped

# Numpy and PIL
prepro.py 文件源码 项目:dcgan 作者: zsdonghao 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def projective_transform_by_points(x, src, dst, map_args={}, output_shape=None, order=1, mode='constant', cval=0.0, clip=True, preserve_range=False):
    """Projective transform by given coordinates, usually 4 coordinates. see `scikit-image <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`_.

    Parameters
    -----------
    x : numpy array
        An image with dimension of [row, col, channel] (default).
    src : list or numpy
        The original coordinates, usually 4 coordinates of (x, y).
    dst : list or numpy
        The coordinates after transformation, the number of coordinates is the same with src.
    map_args : dict, optional
        Keyword arguments passed to inverse_map.
    output_shape : tuple (rows, cols), optional
        Shape of the output image generated. By default the shape of the input image is preserved. Note that, even for multi-band images, only rows and columns need to be specified.
    order : int, optional
        The order of interpolation. The order has to be in the range 0-5:

        - 0 Nearest-neighbor
        - 1 Bi-linear (default)
        - 2 Bi-quadratic
        - 3 Bi-cubic
        - 4 Bi-quartic
        - 5 Bi-quintic
    mode : {‘constant’, ‘edge’, ‘symmetric’, ‘reflect’, ‘wrap’}, optional
        Points outside the boundaries of the input are filled according to the given mode. Modes match the behaviour of numpy.pad.
    cval : float, optional
        Used in conjunction with mode ‘constant’, the value outside the image boundaries.
    clip : bool, optional
        Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range.
    preserve_range : bool, optional
        Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float.

    Examples
    --------
    >>> Assume X is an image from CIFAR 10, i.e. shape == (32, 32, 3)
    >>> src = [[0,0],[0,32],[32,0],[32,32]]
    >>> dst = [[10,10],[0,32],[32,0],[32,32]]
    >>> x = projective_transform_by_points(X, src, dst)

    References
    -----------
    - `scikit-image : geometric transformations <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`_
    - `scikit-image : examples <http://scikit-image.org/docs/dev/auto_examples/index.html>`_
    """
    if type(src) is list:   # convert to numpy
        src = np.array(src)
    if type(dst) is list:
        dst = np.array(dst)
    if np.max(x)>1:         # convert to [0, 1]
        x = x/255

    m = transform.ProjectiveTransform()
    m.estimate(dst, src)
    warped = transform.warp(x, m,  map_args=map_args, output_shape=output_shape, order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range)
    return warped

# Numpy and PIL
prepro.py 文件源码 项目:Image-Captioning 作者: zsdonghao 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def projective_transform_by_points(x, src, dst, map_args={}, output_shape=None, order=1, mode='constant', cval=0.0, clip=True, preserve_range=False):
    """Projective transform by given coordinates, usually 4 coordinates. see `scikit-image <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`_.

    Parameters
    -----------
    x : numpy array
        An image with dimension of [row, col, channel] (default).
    src : list or numpy
        The original coordinates, usually 4 coordinates of (x, y).
    dst : list or numpy
        The coordinates after transformation, the number of coordinates is the same with src.
    map_args : dict, optional
        Keyword arguments passed to inverse_map.
    output_shape : tuple (rows, cols), optional
        Shape of the output image generated. By default the shape of the input image is preserved. Note that, even for multi-band images, only rows and columns need to be specified.
    order : int, optional
        The order of interpolation. The order has to be in the range 0-5:
            - 0 Nearest-neighbor
            - 1 Bi-linear (default)
            - 2 Bi-quadratic
            - 3 Bi-cubic
            - 4 Bi-quartic
            - 5 Bi-quintic
    mode : {‘constant’, ‘edge’, ‘symmetric’, ‘reflect’, ‘wrap’}, optional
        Points outside the boundaries of the input are filled according to the given mode. Modes match the behaviour of numpy.pad.
    cval : float, optional
        Used in conjunction with mode ‘constant’, the value outside the image boundaries.
    clip : bool, optional
        Whether to clip the output to the range of values of the input image. This is enabled by default, since higher order interpolation may produce values outside the given input range.
    preserve_range : bool, optional
        Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of img_as_float.

    Examples
    --------
    >>> Assume X is an image from CIFAR 10, i.e. shape == (32, 32, 3)
    >>> src = [[0,0],[0,32],[32,0],[32,32]]
    >>> dst = [[10,10],[0,32],[32,0],[32,32]]
    >>> x = projective_transform_by_points(X, src, dst)

    References
    -----------
    - `scikit-image : geometric transformations <http://scikit-image.org/docs/dev/auto_examples/applications/plot_geometric.html>`_
    - `scikit-image : examples <http://scikit-image.org/docs/dev/auto_examples/index.html>`_
    """
    if type(src) is list:   # convert to numpy
        src = np.array(src)
    if type(dst) is list:
        dst = np.array(dst)
    if np.max(x)>1:         # convert to [0, 1]
        x = x/255

    m = transform.ProjectiveTransform()
    m.estimate(dst, src)
    warped = transform.warp(x, m,  map_args=map_args, output_shape=output_shape, order=order, mode=mode, cval=cval, clip=clip, preserve_range=preserve_range)
    return warped

# Numpy and PIL


问题


面经


文章

微信
公众号

扫码关注公众号