def subtract_background(self):
fgbg = cv2.createBackgroundSubtractorMOG2()
prev = self.frames[0]
fgmask = fgbg.apply(prev)
for (i,next) in enumerate(self.frames[1:]):
prev_gray = cv2.cvtColor(prev, cv2.COLOR_BGR2GRAY)
next_gray = cv2.cvtColor(next, cv2.COLOR_BGR2GRAY)
similarity_metric = compare_ssim(prev_gray, next_gray)
print('prev/next similarity measure = %f' % similarity_metric)
if similarity_metric < self.transition_threshold:
fgmask = fgbg.apply(next)
fgdn = denoise_foreground(next, fgmask)
self.transitions.append((1, fgdn))
else:
fgmask = fgbg.apply(next)
self.transitions.append((0, None))
prev = next.copy()
python类compare_ssim()的实例源码
def compare_images(image_a, image_b, title):
# compute the mean squared error and structural similarity
# index for the images
m = mse(image_a, image_b)
s = compare_ssim(image_a, image_b, multichannel=True)
# setup the figure
fig = plt.figure(title)
plt.suptitle("MSE: %.2f, SSIM: %.2f" % (m, s))
# show first image
ax = fig.add_subplot(1, 2, 1)
plt.imshow(image_a, cmap=plt.cm.gray)
plt.axis("off")
# show the second image
ax = fig.add_subplot(1, 2, 2)
plt.imshow(image_b, cmap=plt.cm.gray)
plt.axis("off")
# show the images
plt.show()
def test_initial_pass_through_compare(self):
original = cv2.imread(os.path.join(self.provider.assets, "start_screen.png"))
against = self.provider.get_img_from_screen_shot()
wrong = cv2.imread(os.path.join(self.provider.assets, "battle.png"))
# convert the images to grayscale
original = mask_image([127], [255], cv2.cvtColor(original, cv2.COLOR_BGR2GRAY), True)
against = mask_image([127], [255], cv2.cvtColor(against, cv2.COLOR_BGR2GRAY), True)
wrong = mask_image([127], [255], cv2.cvtColor(wrong, cv2.COLOR_BGR2GRAY), True)
# initialize the figure
(score, diff) = compare_ssim(original, against, full=True)
diff = (diff * 255).astype("uint8")
self.assertTrue(score > .90, 'If this is less then .90 the initial compare of the app will fail')
(score, nothing) = compare_ssim(original, wrong, full=True)
self.assertTrue(score < .90)
if self.__debug_pictures__:
# threshold the difference image, followed by finding contours to
# obtain the regions of the two input images that differ
thresh = cv2.threshold(diff, 0, 255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0]
# loop over the contours
for c in cnts:
# compute the bounding box of the contour and then draw the
# bounding box on both input images to represent where the two
# images differ
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(original, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.rectangle(against, (x, y), (x + w, y + h), (0, 0, 255), 2)
# show the output images
diffs = ("Original", original), ("Modified", against), ("Diff", diff), ("Thresh", thresh)
images = ("Original", original), ("Against", against), ("Wrong", wrong)
self.setup_compare_images(diffs)
self.setup_compare_images(images)
def test(epoch):
avg_psnr = 0
avg_ssim = 0
for left, right in testing_data_loader:
if args.direction == 'lr':
input.data.resize_(left.size()).copy_(left)
target.data.resize_(right.size()).copy_(right)
else:
input.data.resize_(right.size()).copy_(right)
target.data.resize_(left.size()).copy_(left)
prediction = netG(input)
im_true = np.transpose(target.data.cpu().numpy(), (0, 2, 3, 1))
im_test = np.transpose(prediction.data.cpu().numpy(), (0, 2, 3, 1))
for i in range(input.size(0)):
avg_psnr += psnr(im_true[i], im_test[i])
avg_ssim += (ssim(im_true[i,:,:,0], im_test[i,:,:,0]) + ssim(im_true[i,:,:,1], im_test[i,:,:,1]) + ssim(im_true[i,:,:,2], im_test[i,:,:,2])) / 3
print("[TEST] PSNR: {:.4f}; SSIM: {:.4f}".format(avg_psnr / len(test_set), avg_ssim / len(test_set)))
def __is_initial_screen__(self, *args, **kwargs):
original = cv2.imread(os.path.join(self.assets, "start_screen.png"))
against = self.get_img_from_screen_shot()
# convert the images to grayscale
original = mask_image([127], [255], cv2.cvtColor(original, cv2.COLOR_BGR2GRAY), True)
against = mask_image([127], [255], cv2.cvtColor(against, cv2.COLOR_BGR2GRAY), True)
(score, diff) = compare_ssim(original, against, full=True)
if score > .9:
return True
return False
def classify_ssim(database, names, image):
# usando ssim
max=0
i=0
for example in database:
s = ssim(image, example)
print(names[i] + ' = ' + str(s))
if s>max:
max=s
result = names[i]
i+=1
return result
# input: carta, imagen de la carta completa
# output: valor en formato string del 2 al 10, A, J, Q o K
def eval_images_naive(it, gen, data, tag='', sampler=None):
metrics = OrderedDict()
if sampler is not None:
z = sampler(128)
samples = gen(z) # Feed z
else:
samples = gen(128) # Generate n images
true_samples = data.validation.images
true_labels = data.validation.labels if 'labels' in dir(data.validation) else None
# Compute dist.
dist_func = lambda a, b: np.linalg.norm((a - b).reshape((-1)), ord=2)
# Distance: (generated samples) x (true samples)
dist = np.array([[dist_func(x, x_true) for x_true in true_samples] for x in samples])
best_matching_i_true = np.argmin(dist, axis=1)
metrics['n_modes'] = len(np.unique(best_matching_i_true))
metrics['ave_dist'] = np.average(np.min(dist, axis=1))
# Check the labels (if exist)
if true_labels is not None:
label_cnts = np.sum(true_labels[best_matching_i_true], axis=0)
metrics['n_labels'] = np.sum(label_cnts > 0)
# Compute SSIM among top-k candidates (XXX: No supporting evidence for this approx.)
k = 10
top_k_matching_samples = np.argpartition(dist, k, axis=1)[:, :k]
# Please refer to https://en.wikipedia.org/wiki/Structural_similarity
# compare_ssim assumes (W, H, C) ordering
sim_func = lambda a, b: ssim(a, b, multichannel=True, data_range=2.0)
# Similarity: (generated samples) x (top-k candidates)
sim = [[sim_func(samples[i], true_samples[i_true]) for i_true in i_topk] \
for i, i_topk in enumerate(top_k_matching_samples)]
sim = np.array(sim)
metrics['ave_sim'] = np.average(np.max(sim, axis=1))
# TODO: Impl. IvOM
# TODO: Impl. better metrics
print "Eval({}) ".format(it), ', '.join(['{}={:.2f}'.format(k, v) for k, v in metrics.iteritems()])
return metrics