def extract_dataset(net_message):
assert net_message.layer[0].type == "DenseImageData"
source = net_message.layer[0].dense_image_data_param.source
with open(source) as f:
data = f.read().split()
ims = ImageCollection(data[::2])
labs = ImageCollection(data[1::2])
assert len(ims) == len(labs) > 0
return ims, labs
python类ImageCollection()的实例源码
def extract_dataset(net_message):
assert net_message.layer[0].type == "DenseImageData"
source = net_message.layer[0].dense_image_data_param.source
with open(source) as f:
data = f.read().split()
ims = ImageCollection(data[::2])
labs = ImageCollection(data[1::2])
assert len(ims) == len(labs) > 0
return ims, labs
def load_frames(folder_name, offset=0, desired_fps=3, max_frames=40):
"""
:param folder_name: Filename with a gif
:param offset: How many frames into the gif we want to start at
:param desired_fps: How many fps we'll sample from the image
:return: [T, h, w, 3] GIF
"""
coll = ImageCollection(folder_name + '/out-*.jpg', mode='RGB')
try:
duration_path = folder_name + '/duration.txt'
with open(duration_path,'r') as f:
durs = f.read().splitlines()
fps = 100.0/durs[0]
except:
# Some error occurs
fps = 10
# want to scale it to desired_fps
keep_ratio = max(1., fps/desired_fps)
frames = np.arange(offset, len(coll), keep_ratio).astype(int)[:max_frames]
def _add_chans(img):
if img.ndim == 3:
return img
return np.stack([img]*3,-1)
imgs_concat = concatenate_images([_add_chans(coll[f]) for f in frames])
assert imgs_concat.ndim == 4
return imgs_concat
def extract_dataset(net_message):
assert net_message.layer[0].type == "DenseImageData"
source = net_message.layer[0].dense_image_data_param.source
with open(source) as f:
data = f.read().split()
ims = ImageCollection(data[::2])
labs = ImageCollection(data[1::2])
assert len(ims) == len(labs) > 0
return ims, labs
def extract_dataset(net_message):
assert net_message.layer[0].type == "DenseImageData"
source = net_message.layer[0].dense_image_data_param.source
with open(source) as f:
data = f.read().split()
print data
ims = ImageCollection(data[::2])
labs = ImageCollection(data[1::2])
assert len(ims) == len(labs) > 0
return ims, labs
def extract_dataset(net_message):
assert net_message.layer[0].type == "DenseImageData"
source = net_message.layer[0].dense_image_data_param.source
with open(source) as f:
data = f.read().split()
ims = ImageCollection(data[::2])
labs = ImageCollection(data[1::2])
assert len(ims) == len(labs) > 0
return ims, labs
def extract_dataset(net_message):
assert net_message.layer[0].type == "DenseImageData"
source = net_message.layer[0].dense_image_data_param.source
with open(source) as f:
data = f.read().split()
ims = ImageCollection(data[::2])
labs = ImageCollection(data[1::2])
assert len(ims) == len(labs) > 0
return ims, labs