python类imsave()的实例源码

dataset.py 文件源码 项目:stegasawus 作者: rokkuran 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def crop_images(path_images, path_output, dimensions, centre=True):
    """
    Batch crop images from top left hand corner to dimensions specified. Skips
    images where dimensions are incompatible.
    """
    print 'cropping images...'
    for i, filename in enumerate(os.listdir(path_images)):
        try:
            image = io.imread('{}{}'.format(path_images, filename))
            cropped = crop_image(image, dimensions, centre=centre)
            io.imsave(
                fname='{}{}'.format(path_output, filename),
                arr=cropped
            )
            print '{}: {}'.format(i, filename)
        except IndexError:
            print '{}: {} failed - dimensions incompatible'.format(i, filename)

    print 'all images cropped and saved.'
lip_image.py 文件源码 项目:lipnet 作者: grishasergei 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _remove_padding(path_to_image, output_path, padding):
    """
    Removes padding of a single image and saves output to a new file
    :param path_to_image: full path to an input image
    :param output_path: full path to a file in which output result is saved
    :param padding: integer
    :return: nothing
    """
    if not os.path.isfile(path_to_image):
        print 'Warning: %s not found' % path_to_image
        return
    # read image
    image = io.imread(path_to_image)
    dim = image.shape
    x = dim[0] - padding
    y = dim[1] - padding
    # crop the image
    image_cropped = image[padding:x, padding:y]
    # save cropped image
    io.imsave(output_path, image_cropped)
gen_data.py 文件源码 项目:deephash 作者: caoyue10 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def showImage( batch_id, dictionary, imSize, attr, outfile):
    images = dictionary.get('data')
    labels = dictionary.get('labels')
    for i in xrange(10000):
        singleImage = images[i]

        recon = np.zeros( (imSize, imSize, 3), dtype = np.uint8 )
        singleImage = singleImage.reshape( (imSize*3, imSize))

        red = singleImage[0:imSize,:]
        blue = singleImage[imSize:2*imSize,:]
        green = singleImage[2*imSize:3*imSize,:]

        recon[:,:,0] = red
        recon[:,:,1] = blue
        recon[:,:,2] = green

        outpath = os.path.abspath(".") + "/" + attr + "/" + str(batch_id) + "_" + str(i) + ".jpg"
        #recon = resize(recon, (256, 256))
        io.imsave(outpath, recon)
        outfile.write(outpath + " " + str(labels[i]) + "\n")
writer.py 文件源码 项目:nuts-ml 作者: maet3608 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __call__(self, sample):
        """Return sample and write image within sample"""
        pathfunc, namefunc = self.pathfunc, self.namefunc
        name = namefunc(sample) if isfunction(namefunc) else next(namefunc)

        if isinstance(pathfunc, str):
            filepath = pathfunc.replace('*', str(name))
        elif isfunction(pathfunc):
            filepath = pathfunc(sample, name)
        else:
            raise ValueError('Expect path or function: ' + str(pathfunc))

        create_folders(os.path.split(filepath)[0])
        img = sample if self.column is None else sample[self.column]
        sio.imsave(filepath, img)
        return sample
compute_figure.py 文件源码 项目:mrflow 作者: jswulff 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot_figure_video_structure(structures, structure_combined, structure_optimized, rigidity_refined):
    # Figure 92
    PTH='./figure_structure/'
    if not os.path.isdir(PTH):
        os.makedirs(PTH)


    structure_min = np.percentile(structure_optimized[rigidity_refined==1].ravel(), 2)
    structure_max = np.percentile(structure_optimized[rigidity_refined==1].ravel(), 98)

    Is_fwd = structure2image(structures[1], rigidity_refined,
                             structure_min=structure_min,
                             structure_max=structure_max)
    Is_comb = structure2image(structure_combined, rigidity_refined,
                             structure_min=structure_min,
                             structure_max=structure_max)
    Is_opt = structure2image(structure_optimized, rigidity_refined,
                             structure_min=structure_min,
                             structure_max=structure_max)

    io.imsave(PTH+'structure_fwd.png', Is_fwd)
    io.imsave(PTH+'structure_comb.png', Is_comb)
    io.imsave(PTH+'structure_opt.png', Is_opt)
compute_figure.py 文件源码 项目:mrflow 作者: jswulff 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_figure_video_pasted_example(rigidity, flow_discrete, flow_ours):
    # Figure 94
    PTH='./figure_pasted/'
    if not os.path.isdir(PTH):
        os.makedirs(PTH)

    I_rigidity = np.dstack((rigidity,rigidity,rigidity)).astype('float')
    I_df = flow_viz.computeFlowImage(flow_discrete[0],flow_discrete[1])
    I_struc = flow_viz.computeFlowImage(flow_ours[0],flow_ours[1])

    I_struc_filtered = I_rigidity*I_struc

    I_final = I_struc_filtered + (1-I_rigidity)*I_df

    I_rigidity_ = I_rigidity.copy()
    I_rigidity_[:,:,1] = 0
    I_rigidity_[:,:,2] = 1-I_rigidity_[:,:,2]

    io.imsave(PTH+'rigidiyt.png', I_rigidity_)
    io.imsave(PTH+'discreteflow.png', I_df)
    io.imsave(PTH+'structureflow.png', I_struc)
    io.imsave(PTH+'structureflow_filtered.png', I_struc_filtered.astype('uint8'))
    io.imsave(PTH+'mrflow.png', I_final.astype('uint8'))
compute_figure.py 文件源码 项目:mrflow 作者: jswulff 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_figure_95(images, rigidity, structure, flow_init, flow):
    # Results figure for video.

    PTH='./figure_results/'
    if not os.path.isdir(PTH):
        os.makedirs(PTH)

    # Save frame triplet
    io.imsave(PTH+'image_0.png', images[0])
    io.imsave(PTH+'image_1.png', images[1])
    io.imsave(PTH+'image_2.png', images[2])

    I_rigidity = np.dstack((rigidity,rigidity,rigidity)).astype('float')
    I_rigidity[:,:,1] = 0
    I_rigidity[:,:,2] = 1-I_rigidity[:,:,2]
    io.imsave(PTH+'rigidity.png', I_rigidity)

    I_structure = structure2image(structure, rigidity)
    io.imsave(PTH+'structure.png', I_structure)

    I_mrflow = flow_viz.computeFlowImage(flow[0],flow[1])
    I_discreteflow = flow_viz.computeFlowImage(flow_init[0],flow_init[1])
    io.imsave(PTH+'mrflow.png', I_mrflow)
    io.imsave(PTH+'discreteflow.png', I_discreteflow)
utils.py 文件源码 项目:FeatureMapInversion 作者: xzqjack 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def SaveImage(img, args, epoch):
    """
    Postprocess Image and use total tv-norm to denoise postprocessed image

    1. postprocess Image
    2. use total tv-norm to denoise postprocessed image

    Parameters
    --------
    img: ndarray (1x3xMxN), optimized image

    Returns
    """
    out = PostprocessImage(img)
    out = denoise_tv_chambolle(out, weight=args.remove_noise, multichannel=True)
    if args.mod_type == "purposeful":
        save_name = os.path.join(args.output,"{}_{}_{}_{}_{}.jpg".\
        format(args.layer_name, args.mod_type, os.path.basename(args.content_image)[:-4],\
                 os.path.basename(args.style_image)[:-4], epoch))
    else:
        save_name = os.path.join(args.output,"{}_{}_{}_{}.jpg".\
        format(args.layer_name, args.mod_type, os.path.basename(args.content_image)[:-4], epoch))
    logging.info('save output to %s', save_name)
    io.imsave(save_name, out)
cropframes.py 文件源码 项目:news-shot-classification 作者: gshruti95 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def cropframes(clip_dir, image_files, clip_path):

    clip = clip_path.split('/')[-1]
    clip_name = clip.split('.')[0]

    crop_dir = clip_dir + 'cropped/'
    # crop_dir = '/home/sxg755/dataset/train/all_frames/cropped/'
    if not os.path.exists(crop_dir):
        os.makedirs(crop_dir)

    cropped_files = []
    for idx, image in enumerate(image_files):   
        img = io.imread(image)
        h = img.shape[0]
        w = img.shape[1]
        img_cropped = img[0:4*h/5, 0:w]
        io.imsave(crop_dir + clip_name + '_keyframe' +  "{0:0>4}".format(idx+1) + '.jpg', img_cropped)
        cropped_files.append(crop_dir + clip_name + '_keyframe' +  "{0:0>4}".format(idx+1) + '.jpg')

    return cropped_files
scripts.py 文件源码 项目:PassportEye 作者: konstantint 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def mrz():
    """
    Command-line script for extracting MRZ from a given image
    """
    parser = argparse.ArgumentParser(description='Run the MRZ OCR recognition algorithm on the given image.')
    parser.add_argument('filename')
    parser.add_argument('--json', action='store_true', help='Produce JSON (rather than tabular) output')
    parser.add_argument('-r', '--save-roi', default=None,
                        help='Output the region of the image that is detected to contain the MRZ to the given png file')
    parser.add_argument('--version', action='version', version='PassportEye MRZ v%s' % passporteye.__version__)
    args = parser.parse_args()

    filename, mrz, walltime = process_file((args.filename, args.save_roi is not None))
    d = mrz.to_dict() if mrz is not None else {'mrz_type': None, 'valid': False, 'valid_score': 0}
    d['walltime'] = walltime
    d['filename'] = filename

    if args.save_roi is not None and mrz is not None and 'roi' in mrz.aux:
        io.imsave(args.save_roi, mrz.aux['roi'])

    if not args.json:
        for k in d:
            print("%s\t%s" % (k, str(d[k])))
    else:
        print(json.dumps(d, indent=2))
brain_pipeline.py 文件源码 项目:BRATS 作者: e271141 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def save_labels(fns):
    '''
    INPUT list 'fns': filepaths to all labels
    '''
    progress.currval = 0 
    slices=np.zeros((240,240)) 

    label=glob(fns+'/*OT.nii.gz')

    print 'len of label:',len(label)
    print 'type of label:',type(label)

    s =  ni.load_image(label[0])
    print s.shape
    print "=========="
    label_idx=0
    for slice_idx in xrange(1):
        slices=np.asarray(s[:,:,slice_idx])
        print slices.shape
        io.imsave(ORI_PATH+'Labels/{}_{}L.png'.format(label_idx, slice_idx), slices)
gmvae.py 文件源码 项目:vi_vae_gmm 作者: wangg12 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def save_image_with_clusters(x, clusters, filename, shape=(10, 10), scale_each=False,
                           transpose=False):
    '''single image, each row is a cluster'''
    makedirs(filename)
    n = x.shape[0]

    images = np.zeros_like(x)
    curr_len = 0
    for i in range(10):
        images_i = x[clusters==i, :]
        n_i = images_i.shape[0]
        images[curr_len : curr_len+n_i, :] = images_i
        curr_len += n_i

    x = images

    if transpose:
        x = x.transpose(0, 2, 3, 1)
    if scale_each is True:
        for i in range(n):
            x[i] = rescale_intensity(x[i], out_range=(0, 1))

    n_channels = x.shape[3]
    x = img_as_ubyte(x)
    r, c = shape
    if r * c < n:
        print('Shape too small to contain all images')
    h, w = x.shape[1:3]
    ret = np.zeros((h * r, w * c, n_channels), dtype='uint8')
    for i in range(r):
        for j in range(c):
            if i * c + j < n:
                ret[i * h:(i + 1) * h, j * w:(j + 1) * w, :] = x[i * c + j]
    ret = ret.squeeze()
    io.imsave(filename, ret)
tasks.py 文件源码 项目:django-celery-rabbitmq-example 作者: Giangblackk 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def simple_image_process(file_name):
    random_number = random.randint(1,100)
    image = io.imread(file_name,as_grey=True)
    io.imsave(file_name + str(random_number) +'.png',image)
    return random_number
utils.py 文件源码 项目:zhusuan 作者: thu-ml 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def save_image_collections(x, filename, shape=(10, 10), scale_each=False,
                           transpose=False):
    """
    :param shape: tuple
        The shape of final big images.
    :param x: numpy array
        Input image collections. (number_of_images, rows, columns, channels) or
        (number_of_images, channels, rows, columns)
    :param scale_each: bool
        If true, rescale intensity for each image.
    :param transpose: bool
        If true, transpose x to (number_of_images, rows, columns, channels),
        i.e., put channels behind.
    :return: `uint8` numpy array
        The output image.
    """
    makedirs(filename)
    n = x.shape[0]
    if transpose:
        x = x.transpose(0, 2, 3, 1)
    if scale_each is True:
        for i in range(n):
            x[i] = rescale_intensity(x[i], out_range=(0, 1))
    n_channels = x.shape[3]
    x = img_as_ubyte(x)
    r, c = shape
    if r * c < n:
        print('Shape too small to contain all images')
    h, w = x.shape[1:3]
    ret = np.zeros((h * r, w * c, n_channels), dtype='uint8')
    for i in range(r):
        for j in range(c):
            if i * c + j < n:
                ret[i * h:(i + 1) * h, j * w:(j + 1) * w, :] = x[i * c + j]
    ret = ret.squeeze()
    io.imsave(filename, ret)
helper_dataset.py 文件源码 项目:reseg 作者: fvisin 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def convert_RGB_mask_to_index(im, colors, ignore_missing_labels=False):
    """
    :param im: mask in RGB format (classes are RGB colors)
    :param colors: the color map should be in the following format

         colors = OrderedDict([
            ("Sky", np.array([[128, 128, 128]], dtype=np.uint8)),
            ("Building", np.array([[128, 0, 0],   # Building
                               [64, 192, 0],  # Wall
                               [0, 128, 64]   # Bridge
                               ], dtype=np.uint8)
            ...
                               ])

    :param ignore_missing_labels: if True the function continue also if some
    pixels fail the mappint
    :return: the mask in index class format
    """

    out = (np.ones(im.shape[:2]) * 255).astype(np.uint8)
    for grey_val, (label, rgb) in enumerate(colors.items()):
        for el in rgb:
            match_pxls = np.where((im == np.asarray(el)).sum(-1) == 3)
            out[match_pxls] = grey_val
            if ignore_missing_labels:  # retrieve the void label
                if [0, 0, 0] in rgb:
                    void_label = grey_val
    # debug
    # outpath = '/Users/marcus/exp/datasets/camvid/grey_test/o.png'
    # imsave(outpath, out)
    ######

    if ignore_missing_labels:
        match_missing = np.where(out == 255)
        if match_missing[0].size > 0:
            print "Ignoring missing labels"
            out[match_missing] = void_label

    assert (out != 255).all(), "rounding errors or missing classes in colors"
    return out.astype(np.uint8)
helper_dataset.py 文件源码 项目:reseg 作者: fvisin 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def save_image(outpath, img):
    import errno
    try:
        os.makedirs(os.path.dirname(outpath))
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise e
        pass
    imsave(outpath, img)
data_processing.py 文件源码 项目:mx-fast-neural-style 作者: xlvector 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def SaveImage(img, filename, remove_noise=0.05):
    logging.info('save output to %s', filename)
    out = PostprocessImage(img)
    if remove_noise != 0.0:
        out = denoise_tv_chambolle(out, weight=remove_noise, multichannel=True)
    io.imsave(filename, out)
utils.py 文件源码 项目:mxnet-fast-neural-style 作者: SineYuan 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def save_output(gen, dest):
    out = gen.get_outputs()[0]
    io.imsave(dest, postprocess_img(out.asnumpy()[0]))
nutszebra_preprocess_picture.py 文件源码 项目:trainer 作者: nutszebra 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _save_picture(data, path):
        try:
            io.imsave(path, data)
            return True
        except (KeyError, TypeError):
            return False
augmentation.py 文件源码 项目:Nature-Conservancy-Fish-Image-Prediction 作者: Brok-Bucholtz 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def augment(method, save_dir):
    train_filepaths = list(glob('./data/train/*/*.jpg'))
    labels = [path[13:-14] for path in train_filepaths]

    # Create label directories if they don't exist
    for label in labels:
        if not exists(save_dir + label):
            makedirs(save_dir + label)

    for file_path, label in tqdm(list(zip(train_filepaths, labels))):
        augmented_image = method(io.imread(file_path))
        io.imsave(save_dir + label + '/' + basename(file_path), augmented_image)
utilities.py 文件源码 项目:Cocktail-Party-Problem 作者: vishwajeet97 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def saveImages(image_list, name_list, path):
    """Saves the list of images in the folder specified by path"""
    i = 0
    for image in image_list:
        name = name_list[i]
        io.imsave("./images/" + path + "/" + name + ".jpg", image)
        i += 1
utilities.py 文件源码 项目:Cocktail-Party-Problem 作者: vishwajeet97 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def saveImages(image_list, name_list, path):
    """Saves the list of images in the folder specified by path"""
    i = 0
    for image in image_list:
        name = name_list[i]
        io.imsave(path + "/" + name + ".jpg", image)
        i += 1
transform.py 文件源码 项目:Imagyn 作者: zevisert 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def skimage_to_pil(img):
    """
    Convert Skimage image to a PIL image
    :param img: Skimage image object
    :return: PIL image object
    """
    # Get the absolute path of the working directory
    abspath = os.path.dirname(__file__)

    # Create a temp file to store the image
    temp = tempfile.NamedTemporaryFile(suffix=".jpg", delete=False, dir=abspath)

    # Save the image into the temp file
    io.imsave(temp.name, img)

    # Read the image as a PIL object
    pil_img = Image.open(temp.name)
    pil_img.load()

    # Close the file
    temp.close()

    # Delete the file
    os.remove(temp.name)

    return pil_img
imageutil.py 文件源码 项目:nuts-ml 作者: maet3608 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def save_image(filepath, image):
    """
    Save numpy array as image (or numpy array) to given filepath.

    Supported formats: gif, png, jpg, bmp, tif, npy

    :param string filepath: File path for image file. Extension determines
        image file format, e.g. .gif
    :param numpy array image: Numpy array to save as image.
        Must be of shape (h,w) or (h,w,3) or (h,w,4)
    """
    if filepath.endswith('.npy'):  # image as numpy array
        np.save(filepath, image, allow_pickle=False)
    else:
        ski.imsave(filepath, image)
colorutils.py 文件源码 项目:hintbot 作者: madebyollin 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test():
    rgba = io.imread("debug.png")
    hsva = RGBAtoHSVA(rgba)
    noise = np.random.normal(0,0.01,rgba.shape)
    hsva += noise
    io.imsave("debug_rgbaconvert.png", HSVAtoRGBA(hsva))
hintbot.py 文件源码 项目:hintbot 作者: madebyollin 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def predictsinglefile(model, filepath):
    filepath = os.path.abspath(filepath)
    assert os.path.isfile(filepath), "File " + str(filepath) + " does not exist"
    outputpath = os.path.dirname(filepath) + "/" + os.path.splitext(os.path.basename(filepath))[0] + "_hinted.png"
    original = io.imread(filepath)
    hinted = predict(model, original)
    io.imsave(outputpath, hinted)
main.py 文件源码 项目:grad-cam.tensorflow 作者: Ankush96 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def main(_):
    x, img = load_image(FLAGS.input)

    sess = tf.Session()

    print("\nLoading Vgg")
    imgs = tf.placeholder(tf.float32, [None, 224, 224, 3])
    vgg = vgg16(imgs, 'vgg16_weights.npz', sess)

    print("\nFeedforwarding")
    prob = sess.run(vgg.probs, feed_dict={vgg.imgs: x})[0]
    preds = (np.argsort(prob)[::-1])[0:5]
    print('\nTop 5 classes are')
    for p in preds:
        print(class_names[p], prob[p])

    # Target class
    predicted_class = preds[0]
    # Target layer for visualization
    layer_name = FLAGS.layer_name
    # Number of output classes of model being used
    nb_classes = 1000

    cam3 = grad_cam(x, vgg, sess, predicted_class, layer_name, nb_classes)

    img = img.astype(float)
    img /= img.max()

    # Superimposing the visualization with the image.
    new_img = img+3*cam3
    new_img /= new_img.max()

    # Display and save
    io.imshow(new_img)
    plt.show()
    io.imsave(FLAGS.output, new_img)
preprocess.py 文件源码 项目:leaf-classification 作者: MWransky 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def save_image(array, fname, directory='processed'):
    if not exists(directory):
        makedirs(directory)
    io.imsave('processed/{}'.format(fname), array)
compute_figure.py 文件源码 项目:mrflow 作者: jswulff 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_figure_1(images, rigidity_refined, structure_refined, flow_estimated, flow_gt):
    """ Plot teaser image:
    - Triplet of frames
    - Segmentation
    - Structure
    - Flow
    """
    if not os.path.isdir('./teaser'):
        os.makedirs('teaser')

    I1 = img_as_ubyte(images[1])

    cm_bwr = plt.get_cmap('bwr')
    Irigidity = cm_bwr(rigidity_refined.astype('float32'))

    Istructure = structure2image(structure_refined, rigidity_refined)
    #Istructure_gray = structure2image(structure_refined, rigidity_refined)
    #Istructure_plasma = structure2image(structure_refined, rigidity_refined,cmap='plasma')
    #Istructure_inferno = structure2image(structure_refined, rigidity_refined,cmap='inferno')
    #Istructure_hot = structure2image(structure_refined, rigidity_refined,cmap='hot')
    #Istructure_magma =structure2image(structure_refined, rigidity_refined,cmap='magma') 
    #Istructure_viridis =structure2image(structure_refined, rigidity_refined,cmap='viridis') 
    #Istructure_jet =structure2image(structure_refined, rigidity_refined,cmap='jet') 
    #Istructure_rainbow =structure2image(structure_refined, rigidity_refined,cmap='rainbow') 

    Iflow_estimated = flow_viz.computeFlowImage(flow_estimated[0], flow_estimated[1])
    Iflow_gt = flow_viz.computeFlowImage(flow_gt[0],flow_gt[1])

    io.imsave('./teaser/01_images.png', I1)
    io.imsave('./teaser/02_rigidity.png', Irigidity)
    io.imsave('./teaser/03_structure.png', Istructure)
    #io.imsave('./teaser/03_structure_gray.png', Istructure_gray)
    #io.imsave('./teaser/03_structure_plasma.png', Istructure_plasma)
    #io.imsave('./teaser/03_structure_inferno.png', Istructure_inferno)
    #io.imsave('./teaser/03_structure_hot.png', Istructure_hot)
    #io.imsave('./teaser/03_structure_magma.png', Istructure_magma)
    #io.imsave('./teaser/03_structure_viridis.png', Istructure_viridis)
    #io.imsave('./teaser/03_structure_jet.png', Istructure_jet)
    #io.imsave('./teaser/03_structure_rainbow.png', Istructure_rainbow)
    io.imsave('./teaser/04_flowest.png', Iflow_estimated)
    io.imsave('./teaser/05_flowgt.png', Iflow_gt)
compute_figure.py 文件源码 项目:mrflow 作者: jswulff 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_figure_3(image, rigidity_cnn, rigidity_motion, rigidity_structure, rigidity_refined):
    if not os.path.isdir('./rigidityestimation'):
        os.makedirs('./rigidityestimation')

    cm_bwr = plt.get_cmap('bwr')
    Irigidity_cnn = cm_bwr(rigidity_cnn.astype('float32'))
    Irigidity_motion = cm_bwr(rigidity_motion.astype('float32'))
    Irigidity_structure = cm_bwr(rigidity_structure.astype('float32'))
    Irigidity_refined = cm_bwr(rigidity_refined.astype('float32'))

    io.imsave('./rigidityestimation/01_image.png', img_as_ubyte(image))
    io.imsave('./rigidityestimation/02_rigidity_cnn.png', Irigidity_cnn)
    io.imsave('./rigidityestimation/03_rigidity_motion.png', Irigidity_motion)
    io.imsave('./rigidityestimation/04_rigidity_structure.png', Irigidity_structure)
    io.imsave('./rigidityestimation/05_rigidity_refined.png', Irigidity_refined)


问题


面经


文章

微信
公众号

扫码关注公众号