python类imread()的实例源码

main.py 文件源码 项目:Food-Classification 作者: Tkd-Alex 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def display_img_and_representation(x, y, pathimage, y_etichetta):


    print y[y_etichetta]

    img = sio.imread(pathimage)

    plt.figure(figsize=(12,4))

    plt.subplot(1,2,1)
    plt.imshow(img)

    plt.subplot(1,2,2)
    plt.plot(x)

    plt.show()
bovw.py 文件源码 项目:Food-Classification 作者: Tkd-Alex 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def describe_dataset(dataset,kmeans):
    y = list() 
    X = list() 
    paths = list() 

    classes=dataset.getClasses()

    ni = 0
    t1 = time()
    for cl in classes:
        for path in dataset.paths[cl]: 
            img = sio.imread(path,as_grey = True)
            feat = extract_and_describe(img,kmeans)
            X.append(feat)
            y.append(classes.index(cl)) 
            paths.append(path) 
            ni+= 1

    X = np.array(X)
    y = np.array(y)
    t2 = time()
    print "Elapsed time {0:0.2f}".format(t2-t1)
    return X,y,paths
run03_model_train_v3.py 文件源码 项目:FCN_MSCOCO_Food_Segmentation 作者: gakarak 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def readDataMasked(pidx):
    with open(pidx, 'r') as f:
        wdir = os.path.dirname(pidx)
        lstpath = f.read().splitlines()
        lstpath = [os.path.join(wdir,xx) for xx in lstpath]
        numPath = len(lstpath)
        dataX = None
        dataY = None
        for ii,pp in enumerate(lstpath):
            img4 = skio.imread(pp)
            img = img4[:,:,:3].astype(np.float)
            img -= img.mean()
            img /= img.std()
            msk = (img4[:,:,3]>0).astype(np.float)
            msk = np_utils.to_categorical(msk.reshape(-1), 2)
            # msk = msk.reshape(-1)
            if dataX is None:
                dataX = np.zeros([numPath] + list(img.shape))
                dataY = np.zeros([numPath] + list(msk.shape))
            dataX[ii] = img
            dataY[ii] = msk
            if (ii%100)==0:
                print ('[%d/%d]' % (ii, numPath))
        return (dataX, dataY)
run04_model_inference.py 文件源码 项目:FCN_MSCOCO_Food_Segmentation 作者: gakarak 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def readDataMasked(pidx):
    with open(pidx, 'r') as f:
        wdir = os.path.dirname(pidx)
        lstpath = f.read().splitlines()
        lstpath = [os.path.join(wdir,xx) for xx in lstpath]
        numPath = len(lstpath)
        dataX = None
        dataY = None
        for ii,pp in enumerate(lstpath):
            img4 = skio.imread(pp)
            img = img4[:,:,:3].astype(np.float)
            img -= img.mean()
            img /= img.std()
            msk = (img4[:,:,3]>0).astype(np.float)
            msk = np_utils.to_categorical(msk.reshape(-1), 2)
            # msk = msk.reshape(-1)
            if dataX is None:
                dataX = np.zeros([numPath] + list(img.shape))
                dataY = np.zeros([numPath] + list(msk.shape))
            dataX[ii] = img
            dataY[ii] = msk
            if (ii%100)==0:
                print ('[%d/%d]' % (ii, numPath))
        return (dataX, dataY)
run10_common_onimage.py 文件源码 项目:FCN_MSCOCO_Food_Segmentation 作者: gakarak 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def getBatchDataByIdx(self, parBatchIdx):
        rndIdx = parBatchIdx
        parBatchSize = len(rndIdx)
        dataX = np.zeros([parBatchSize] + list(self.shapeImg), dtype=np.float)
        dataY = np.zeros([parBatchSize] + list(self.shapeMsk), dtype=np.float)
        for ii, tidx in enumerate(rndIdx):
            if self.isDataInMemory:
                dataX[ii] = self.dataImg[tidx]
                dataY[ii] = self.dataMskCls[tidx]
            else:
                tpathImg = self.arrPathDataImg[tidx]
                tpathMsk = self.arrPathDataMsk[tidx]
                tdataImg = self.adjustImage(skio.imread(tpathImg))
                tdataMsk = skio.imread(tpathMsk)
                tdataImg = self.transformImageFromOriginal(tdataImg)
                tdataMsk = self.transformImageFromOriginal(tdataMsk)
                tdataMskCls = self.convertMskToOneHot(tdataMsk)
                dataX[ii] = tdataImg
                dataY[ii] = tdataMskCls
        if self.isTheanoShape:
            tshp = dataY.shape
            dataY = dataY.reshape([tshp[0], tshp[1], np.prod(tshp[-2:])]).transpose((0, 2, 1))
            # print (tshp)
        return (dataX, dataY)
from_file.py 文件源码 项目:color-extractor 作者: algolia 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get(self, uri):
        i = imread(uri)
        if len(i.shape) == 2:
            i = gray2rgb(i)
        else:
            i = i[:, :, :3]
        c = self._image_to_color.get(i)

        dbg = self._settings['debug']
        if dbg is None:
            return c

        c, imgs = c
        b = splitext(basename(uri))[0]
        imsave(join(dbg, b + '-resized.jpg'), imgs['resized'])
        imsave(join(dbg, b + '-back.jpg'), img_as_float(imgs['back']))
        imsave(join(dbg, b + '-skin.jpg'), img_as_float(imgs['skin']))
        imsave(join(dbg, b + '-clusters.jpg'), imgs['clusters'])

        return c, {
            'resized': join(dbg, b + '-resized.jpg'),
            'back': join(dbg, b + '-back.jpg'),
            'skin': join(dbg, b + '-skin.jpg'),
            'clusters': join(dbg, b + '-clusters.jpg'),
        }
vfn_eval.py 文件源码 项目:view-finding-network 作者: yiling-chen 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def evaluate_sliding_window(img_filename, crops):
    img = io.imread(img_filename).astype(np.float32)/255
    if img.ndim == 2: # Handle B/W images
        img = np.expand_dims(img, axis=-1)
        img = np.repeat(img, 3, 2)

    img_crops = np.zeros((batch_size, 227, 227, 3))
    for i in xrange(len(crops)):
        crop = crops[i]
        img_crop = transform.resize(img[crop[1]:crop[1]+crop[3],crop[0]:crop[0]+crop[2]], (227, 227))-0.5
        img_crop = np.expand_dims(img_crop, axis=0)
        img_crops[i,:,:,:] = img_crop

    # compute ranking scores
    scores = sess.run([score_func], feed_dict={image_placeholder: img_crops})

    # find the optimal crop
    idx = np.argmax(scores[:len(crops)])
    best_window = crops[idx]

    # return the best crop
    return (best_window[0], best_window[1], best_window[2], best_window[3])
multiblur.py 文件源码 项目:ascii 作者: Tarnasa 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def draw_blur_levels():
    import matplotlib.pyplot as plt
    from skimage import io

    image = io.imread('out/66.png')  # 36 for $, 79 for O

    fig, axes = plt.subplots(nrows=2, ncols=3,
            subplot_kw={'adjustable': 'box-forced'})
    ax = axes.ravel()

    for blur_level in range(6):
        blurred = uniform_filter(image, 3.0*blur_level, mode='reflect', cval=0)

        ax[blur_level].imshow(blurred, cmap='gray', interpolation='nearest')
        ax[blur_level].set_title(str(blur_level), fontsize=20)
    plt.show()
mnist_input.py 文件源码 项目:dcn.tf 作者: beopst 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def load_data(src,shuffle=True):
    """ Load data from directories.
    """

    imgs = [img for img in glob.glob(os.path.join(src,'*.png'))]

    x = np.zeros((len(imgs),100,100), dtype=np.float32)
    y = np.zeros(len(imgs), dtype=np.int64)

    for idx, img in enumerate(imgs):
        im = io.imread(img,1)
        im = img_as_float(im) # rescale from [0,255] to [0,1]

        label = int(img.split('/')[-1].split('.')[0].split('_')[-1])

        x[idx] = im
        y[idx] = label

    x = np.expand_dims(x,3)
    data = zip(x,y)

    if shuffle: random.shuffle(data)

    return data
run.py 文件源码 项目:neural-art-mini 作者: pavelgonchar 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def PreprocessContentImage(path, long_edge):
    img = io.imread(path)
    logging.info("load the content image, size = %s", img.shape[:2])
    factor = float(long_edge) / max(img.shape[:2])
    new_size = (int(img.shape[0] * factor), int(img.shape[1] * factor))
    resized_img = transform.resize(img, new_size)
    sample = np.asarray(resized_img) * 256
    # swap axes to make image from (224, 224, 3) to (3, 224, 224)
    sample = np.swapaxes(sample, 0, 2)
    sample = np.swapaxes(sample, 1, 2)
    # sub mean
    sample[0, :] -= 123.68
    sample[1, :] -= 116.779
    sample[2, :] -= 103.939
    logging.info("resize the content image to %s", new_size)
    return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2]))
preprocessing.py 文件源码 项目:kaggle-yelp-restaurant-photo-classification 作者: u1234x1234 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def PreprocessImage(path, show_img=True):
    # load image
    img = io.imread(path)
    print("Original Image Shape: ", img.shape)
    # we crop image from center
    short_egde = min(img.shape[:2])
    yy = int((img.shape[0] - short_egde) / 2)
    xx = int((img.shape[1] - short_egde) / 2)
    crop_img = img[yy : yy + short_egde, xx : xx + short_egde]
    # resize to 299, 299
    resized_img = transform.resize(crop_img, (299, 299))
    if show_img:
        io.imshow(resized_img)
    # convert to numpy.ndarray
    sample = np.asarray(resized_img) * 256
    # swap axes to make image from (299, 299, 3) to (3, 299, 299)
    sample = np.swapaxes(sample, 0, 2)
    sample = np.swapaxes(sample, 1, 2)
    # sub mean
    normed_img = sample - 128.
    normed_img /= 128.

    return np.reshape(normed_img, (1, 3, 299, 299))
predict.py 文件源码 项目:kaggle-yelp-restaurant-photo-classification 作者: u1234x1234 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def PreprocessImage(path, show_img=True):
    # load image
    img = io.imread(path)
#    print("Original Image Shape: ", img.shape)
    # we crop image from center
    short_egde = min(img.shape[:2])
    yy = int((img.shape[0] - short_egde) / 2)
    xx = int((img.shape[1] - short_egde) / 2)
    crop_img = img[yy : yy + short_egde, xx : xx + short_egde]
    # resize to 299, 299
    resized_img = transform.resize(crop_img, (299, 299))
    if show_img:
        io.imshow(resized_img)
    # convert to numpy.ndarray
    sample = np.asarray(resized_img) * 256
    # swap axes to make image from (299, 299, 3) to (3, 299, 299)
    sample = np.swapaxes(sample, 0, 2)
    sample = np.swapaxes(sample, 1, 2)
    # sub mean
    normed_img = sample - 128.
    normed_img /= 128.

    return np.reshape(normed_img, (1, 3, 299, 299))
cropframes.py 文件源码 项目:news-shot-classification 作者: gshruti95 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def cropframes(clip_dir, image_files, clip_path):

    clip = clip_path.split('/')[-1]
    clip_name = clip.split('.')[0]

    crop_dir = clip_dir + 'cropped/'
    # crop_dir = '/home/sxg755/dataset/train/all_frames/cropped/'
    if not os.path.exists(crop_dir):
        os.makedirs(crop_dir)

    cropped_files = []
    for idx, image in enumerate(image_files):   
        img = io.imread(image)
        h = img.shape[0]
        w = img.shape[1]
        img_cropped = img[0:4*h/5, 0:w]
        io.imsave(crop_dir + clip_name + '_keyframe' +  "{0:0>4}".format(idx+1) + '.jpg', img_cropped)
        cropped_files.append(crop_dir + clip_name + '_keyframe' +  "{0:0>4}".format(idx+1) + '.jpg')

    return cropped_files
evaluation.py 文件源码 项目:sign-detection-and-localization 作者: rajat503 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def load_images(self, test_list):

        """
            train_list : list of users to use for testing
            eg ["user_1", "user_2", "user_3"]
        """

        self.image_list = []

        for user in test_list:

            csv = "%s%s/%s_loc.csv" % (self.data_directory, user, user)

            with open(csv) as fh:
                data = [line.strip().split(',') for line in fh]

            for line in data[1:]:

                img_path, x1,y1,x2,y2, = line
                pos = tuple(map(int,(x1,y1,x2,y2)))
                letter = img_path[-6]

                img = io.imread("%s%s" % (self.data_directory, img_path))

                self.image_list.append((img, pos, letter))
read_localization.py 文件源码 项目:sign-detection-and-localization 作者: rajat503 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def train(user_list, path):
    train_data = []
    train_boxes =[]

    for user in user_list:
        with open(path+user+'/'+user+'_loc.csv', 'rb') as csvfile:
            x=csv.reader(csvfile)
            for row in x:
                if row[0]=='image':
                    continue
                image = io.imread(path+row[0])
                data_vector = image
                # data_vector = np.array(image.flatten()).tolist()
                # sys.exit(0)
                ground_truth = [int(row[1]), int(row[2]), int(row[3]), int(row[4])]

                user_id = int(user.split('_')[1])
                train_data.append(data_vector)
                train_boxes.append(ground_truth)


    localization.train(train_data, train_boxes)
# train(['user_3','user_4','user_5','user_6','user_7','user_9','user_10','user_11','user_12','user_13','user_14','user_15','user_16','user_17','user_18','user_19'])
# train(['user_3','user_4', 'user_5','user_6','user_7','user_9','user_10', 'user_11', 'user_12', 'user_13', 'user_14' ,'user_15', 'user_16', 'user_17', 'user_18','user_19'])
ImageNet.py 文件源码 项目:Representation-Learning-by-Learning-to-Count 作者: gitlimlab 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, ids, name='default',
                 max_examples=None, is_train=True):
        self._ids = list(ids)
        self.name = name
        self.is_train = is_train

        if max_examples is not None:
            self._ids = self._ids[:max_examples]

        file = os.path.join(__IMAGENET_IMG_PATH__, self._ids[0])

        try:
            imread(file)
        except:
            raise IOError('Dataset not found. Please make sure the dataset was downloaded.')
        log.info("Reading Done: %s", file)
mxnet_predict_example.py 文件源码 项目:mxnet_tk1 作者: starimpact 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def PreprocessImage(path, show_img=False):
    # load image
    img = io.imread(path)
    print("Original Image Shape: ", img.shape)
    # we crop image from center
    short_egde = min(img.shape[:2])
    yy = int((img.shape[0] - short_egde) / 2)
    xx = int((img.shape[1] - short_egde) / 2)
    crop_img = img[yy : yy + short_egde, xx : xx + short_egde]
    # resize to 224, 224
    resized_img = transform.resize(crop_img, (224, 224))
    if show_img:
        io.imshow(resized_img)
    # convert to numpy.ndarray
    sample = np.asarray(resized_img) * 255
    # swap axes to make image from (224, 224, 3) to (3, 224, 224)
    sample = np.swapaxes(sample, 0, 2)
    sample = np.swapaxes(sample, 1, 2)

    # sub mean
    normed_img = sample - mean_img
    normed_img.resize(1, 3, 224, 224)
    return normed_img

# Get preprocessed batch (single image batch)
run.py 文件源码 项目:mxnet_tk1 作者: starimpact 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def PreprocessContentImage(path, long_edge):
    img = io.imread(path)
    logging.info("load the content image, size = %s", img.shape[:2])
    factor = float(long_edge) / max(img.shape[:2])
    new_size = (int(img.shape[0] * factor), int(img.shape[1] * factor))
    resized_img = transform.resize(img, new_size)
    sample = np.asarray(resized_img) * 256
    # swap axes to make image from (224, 224, 3) to (3, 224, 224)
    sample = np.swapaxes(sample, 0, 2)
    sample = np.swapaxes(sample, 1, 2)
    # sub mean
    sample[0, :] -= 123.68
    sample[1, :] -= 116.779
    sample[2, :] -= 103.939
    logging.info("resize the content image to %s", new_size)
    return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2]))
data_reader.py 文件源码 项目:han 作者: croath 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def get_real_images(paths):
    real_images = []
    for path in paths:
        # Calculate a threshold to do image binarization, all colors at every pixel will be translated to number 0(white) or 1(black)
        camera = io.imread(path)
        val = filters.threshold_otsu(camera)
        result = (camera < val)*1.0
        real_images.append(result)
    np_images = numpy.array(real_images)
    np_images = np_images.reshape(np_images.shape[0], np_images.shape[1] * np_images.shape[2])
    return np_images
tools.py 文件源码 项目:monogreedy 作者: jinjunqi 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def read_coco_image(data_split, coco_id, root_dir=osp.join(DATA_ROOT, 'mscoco')):
    file_name = 'COCO_{}2014_'.format(data_split) + str(coco_id).zfill(12) + '.jpg'
    im = imread(osp.join(root_dir, data_split+'2014', file_name))
    return im


问题


面经


文章

微信
公众号

扫码关注公众号