python类imread()的实例源码

dataset.py 文件源码 项目:stegasawus 作者: rokkuran 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def crop_images(path_images, path_output, dimensions, centre=True):
    """
    Batch crop images from top left hand corner to dimensions specified. Skips
    images where dimensions are incompatible.
    """
    print 'cropping images...'
    for i, filename in enumerate(os.listdir(path_images)):
        try:
            image = io.imread('{}{}'.format(path_images, filename))
            cropped = crop_image(image, dimensions, centre=centre)
            io.imsave(
                fname='{}{}'.format(path_output, filename),
                arr=cropped
            )
            print '{}: {}'.format(i, filename)
        except IndexError:
            print '{}: {} failed - dimensions incompatible'.format(i, filename)

    print 'all images cropped and saved.'
utils.py 文件源码 项目:chinese_generation 作者: polaroidz 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def batch_generator(batch_size, nb_batches):
    batch_count = 0

    while True:
        pos = batch_count * batch_size
        batch = dataset[pos:pos+batch_size]

        X = np.zeros((batch_size, 1, img_size, img_size), dtype=np.float32)

        for k, path in enumerate(batch):
            im = io.imread(path)
            im = color.rgb2gray(im)

            X[k] = im[np.newaxis, ...]

        X = torch.from_numpy(X)
        X = Variable(X)

        yield X, batch

        batch_count += 1

        if batch_count > nb_batches:
            batch_count = 0
create_test_cropped_image.py 文件源码 项目:kaggle-right-whale 作者: felixlaumon 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_cropped_test_img(fname, bbox_pred, pad=None, as_grey=False, return_bbox=False):
    img = imread(fname, as_grey=as_grey)
    h = img.shape[0]
    w = img.shape[1]
    bbox_pred = bbox_pred * [w, h, w, h]
    bbox_pred = np.round(bbox_pred).astype(int)
    l = min(max(bbox_pred[0], 0), w)
    t = min(max(bbox_pred[1], 0), h)
    r = min(max(l + bbox_pred[2], 0), w)
    b = min(max(t + bbox_pred[3], 0), h)

    if pad is not None:
        l, t, r, b = add_padding_to_bbox(
            l, t, (r - l), (b - t), pad / 100.0,
            img.shape[1], img.shape[0],
            format='ltrb'
        )
    cropped_img = img[t:b, l:r]

    if return_bbox:
        return cropped_img, bbox_pred
    else:
        return cropped_img
create_test_head_crop_image.py 文件源码 项目:kaggle-right-whale 作者: felixlaumon 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_cropped_test_img(fname, bbox_pred, pad=None, as_grey=False, return_bbox=False):
    img = imread(fname, as_grey=as_grey)
    h = img.shape[0]
    w = img.shape[1]
    bbox_pred = bbox_pred * [w, h, w, h]
    bbox_pred = np.round(bbox_pred).astype(int)
    l = min(max(bbox_pred[0], 0), w)
    t = min(max(bbox_pred[1], 0), h)
    r = min(max(l + bbox_pred[2], 0), w)
    b = min(max(t + bbox_pred[3], 0), h)

    if pad is not None:
        l, t, r, b = add_padding_to_bbox(
            l, t, (r - l), (b - t), pad / 100.0,
            img.shape[1], img.shape[0],
            format='ltrb'
        )
    cropped_img = img[t:b, l:r]

    if return_bbox:
        return cropped_img, bbox_pred
    else:
        return cropped_img
megafacade.py 文件源码 项目:facade-segmentation 作者: jfemiani 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def load_image(self, path):
        self.data = imread(path)
        self.path = path
        self._load_image_mask()
        self._mask_out_common_obstructions()
        self._rectify_image()

        self.driving_layers = driving.process_strip(channels_first(self.rectified * 255))
        self.facade_layers = i12.process_strip(channels_first(self.rectified * 255))

        self._create_sky_mask()
        self._segment_windows()
        self._segment_facade_edges()

        facade_cuts = self._split_at_facade_edges()
        facade_mask = self._create_facade_mask()
        wall_colors = self._mask_out_wall_colors(facade_mask)
        self.wall_colors = wall_colors

        self.facade_candidates = self._find_facade_candidates(wall_colors, facade_cuts)
image_helper.py 文件源码 项目:HSISeg 作者: HSISeg 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_data_from_image(image_path):
#   from osgeo import gdal
    from skimage import io
    if image_path.split(".")[1] == "tif":
        M = io.imread(image_path)
#       dataset = gdal.Open(image_path,gdal.GA_ReadOnly)
#       col = dataset.RasterXSize
#       row = dataset.RasterYSize
#       a = [[[]for y in xrange(col)] for z in xrange(row)]
#       for i in xrange(1,dataset.RasterCount + 1):
#           band = dataset.GetRasterBand(i).ReadAsArray()
#           for m in xrange(0,row):
#               for n in xrange(0,col):
#                   a[m][n].append(band[m][n])
#       M = np.array(a,dtype='uint16')
    else:
        M = np.asarray(Image.open(image_path))
    return M
forest.py 文件源码 项目:checkmymeat 作者: kendricktan 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def predict(url):
    global model      
    # Read image
    image = io.imread(url)
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    image = cv2.resize(image, (500, 500), interpolation=cv2.INTER_CUBIC)    

    # Use otsu to mask
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    ret, mask = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
    mask = cv2.medianBlur(mask, 5)

    features = describe(image, mask)

    state = le.inverse_transform(model.predict([features]))[0]
    return {'type': state}
data2lmdb.py 文件源码 项目:train-CRF-RNN 作者: martinkersner 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def convert2lmdb(path_src, src_imgs, ext, path_dst, class_ids, preprocess_mode, im_sz, data_mode):
  if os.path.isdir(path_dst):
    print('DB ' + path_dst + ' already exists.\n'
          'Skip creating ' + path_dst + '.', file=sys.stderr)
    return None

  if data_mode == 'label':
    lut = create_lut(class_ids)

  db = lmdb.open(path_dst, map_size=int(1e12))

  with db.begin(write=True) as in_txn:
    for idx, img_name in enumerate(src_imgs):
      #img = imread(os.path.join(path_src + img_name)+ext)
      img = np.array(Image.open(os.path.join(path_src + img_name)+ext))
      img = img.astype(np.uint8)

      if data_mode == 'label':
        img = preprocess_label(img, lut, preprocess_mode, im_sz)
      elif data_mode == 'image':
        img = preprocess_image(img, preprocess_mode, im_sz)

      img_dat = caffe.io.array_to_datum(img)
      in_txn.put('{:0>10d}'.format(idx), img_dat.SerializeToString())
DeepOCR.py 文件源码 项目:pythonml 作者: nicholastoddsmith 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def LoadData(FP = '.'):
    '''
    Loads the OCR dataset. A is matrix of images (NIMG, Height, Width, Channel).
    Y is matrix of characters (NIMG, MAX_CHAR)
    FP:     Path to OCR data folder
    return: Data Matrix, Target Matrix, Target Strings
    '''
    TFP = os.path.join(FP, 'Train.csv')
    A, Y, T, FN = [], [], [], []
    with open(TFP) as F:
        for Li in F:
            FNi, Yi = Li.strip().split(',')                     #filename,string
            T.append(Yi)
            A.append(imread(os.path.join(FP, 'Out', FNi)))
            Y.append(list(Yi) + [' '] * (MAX_CHAR - len(Yi)))   #Pad strings with spaces
            FN.append(FNi)
    return np.stack(A), np.stack(Y), np.stack(T), np.stack(FN)
transform.py 文件源码 项目:Imagyn 作者: zevisert 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def pil_to_skimage(img):
    """
    Convert PIL image to a Skimage image
    :param img: PIL image object
    :return: Skimage image object
    """
    # Get the absolute path of the working directory
    abspath = os.path.dirname(__file__)

    # Create a temp file to store the image
    temp = tempfile.NamedTemporaryFile(suffix=".jpg", delete=False, dir=abspath)

    # Save the image into the temp file
    img.save(temp.name, 'JPEG')

    # Read the image as a SciKit image object
    ski_img = io.imread(temp.name, plugin='pil')

    # Close the file
    temp.close()

    # Delete the file
    os.remove(temp.name)

    return ski_img
dataSampling.py 文件源码 项目:adascan_public 作者: amlankar 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def flowList(xFileNames, yFileNames):
    '''
    (x/y)fileNames: List of the fileNames in order to get the flows from
    '''

    frameList = []

    if (len(xFileNames) != len(yFileNames)):
        print 'XFILE!=YFILE ERROR: In', xFileNames[0]

    for i in range(0, min(len(xFileNames), len(yFileNames))):
        imgX = io.imread(xFileNames[i])
        imgY = io.imread(yFileNames[i])
        frameList.append(np.dstack((imgX, imgY)))

    frameList = np.array(frameList)
    return frameList
predict_seg.py 文件源码 项目:tefla 作者: openAGI 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot_masks(cropped_image_path, prediction_map, output_image_path):
    fig = plt.figure("segments")
    ax = fig.add_subplot(1, 1, 1)
    image_draw = io.imread(cropped_image_path)
    segparams = SegParams()
    feature_mapping = segparams.feature_palette()
    classes = segparams.feature_classes()
    legend_patches = []
    for i in feature_mapping.keys():
        if i in prediction_map:
            temp_inds = np.where(prediction_map != i)
            temp_map = prediction_map.copy()
            temp_map[temp_inds] = 0
            image_draw = mark_boundaries(
                image_draw, temp_map, mode='inner', color=feature_mapping[i])  # outline_color=feature_mapping[i])
            legend_patches.append(mpatches.Patch(
                color=(feature_mapping[i][0], feature_mapping[i][1], feature_mapping[i][2], 1), label=classes[i]))
    ax.imshow(image_draw)
    lgd = ax.legend(handles=legend_patches,
                    loc="upper left", bbox_to_anchor=(1, 1))
    plt.axis("off")
    plt.savefig(output_image_path.strip('.jpg') + '_segmented.png', bbox_extra_artists=(
        lgd,), bbox_inches='tight')
    plt.show()
data.py 文件源码 项目:hintbot 作者: madebyollin 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def loadImages(datadir, maxDirectoryCount=10, split=0.9):
    for dirPath, dirNames, fileNames in os.walk(datadir):
        fileNames = [f for f in fileNames if not f[0] == '.']
        dirNames[:] = [d for d in dirNames if not d[0] == '.']
        if (maxDirectoryCount != 0):
            fullSizeFileNames = [fileName for fileName in fileNames if fileName.endswith("@2x.png") and (fileName.replace("@2x","") in fileNames)]
            for fullSizeFileName in fullSizeFileNames:
                inputImage = io.imread(dirPath + "/" + fullSizeFileName)
                targetImage = io.imread(dirPath + "/" + fullSizeFileName.replace("@2x",""))
                # print(dirPath + "/" + fullSizeFileName)
                inputSlices, targetSlices = sliceImages(inputImage, targetImage)
                # print("got", len(inputSlices), "input splices and",len(targetSlices),"targetSlices")
                inputImages.extend(inputSlices)
                targetImages.extend(targetSlices)
            maxDirectoryCount -= 1
    x, y = np.asarray(inputImages), np.asarray(targetImages)
    x_train = x[:int(len(x) * split)]
    y_train = y[:int(len(y) * split)]
    x_test = x[int(len(x) * split):]
    y_test = y[int(len(y) * split):]
    # Shuffle training data so that repeats aren't in the same batch
    # x_train, y_train = shuffle(x_train, y_train, random_state=0)
    return (x_train, y_train, x_test, y_test)
voc_utils.py 文件源码 项目:TF-Examples 作者: CharlesShang 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_img(self, img_filename):
        """
        Summary:
            Load image from the filename. Default is to load in color if
            possible.

        Args:
            img_name (string): string of the image name, relative to
                the image directory.

        Returns:
            np array of float32: an image as a numpy array of float32
        """
        if not img_filename.endswith('.jpg'):
            img_filename = os.path.join(self.img_dir, img_filename + '.jpg')
        else:
            img_filename = os.path.join(self.img_dir, img_filename)
        img = skimage.img_as_float(io.imread(
            img_filename)).astype(np.float32)
        if img.ndim == 2:
            img = img[:, :, np.newaxis]
        elif img.shape[2] == 4:
            img = img[:, :, :3]
        return img
BestParameterDetector.py 文件源码 项目:CancerImageAnalyzer2 作者: byeungchun 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def findRemSmObjValue(_biImageFile="E:/workspace/jinyoung/CancerImageAnalyzer/img/ppimg1601101508/thimg1601101511/BF_position020100_time0001hVal0.4thVal0.9.png"):
    _remSmObjOutputPath = '/remSmObjImg'+datetime.datetime.today().strftime('%y%m%d%H%M')+'/'
    remSmObjImageFileName = os.path.basename(_biImageFile)
    biImageFilePath = os.path.dirname(_biImageFile)

    reSmObjImageFilePath = biImageFilePath + _remSmObjOutputPath

    biImg = imread(_biImageFile)
    biImgRsize = biImg.shape[0] * 0.1
    biImgCsize = biImg.shape[1] * 0.1
    biImg = biImg[biImgRsize:-biImgRsize, biImgCsize:-biImgCsize]
    biImg = ndimage.binary_fill_holes(biImg)
    for smObjVal in np.arange(0,100000,10000):
        filledImg = cia.removeSmallObject(biImg, minSize=smObjVal)
        if not os.path.exists(reSmObjImageFilePath):
            os.mkdir(reSmObjImageFilePath)
        biImageFileName = remSmObjImageFileName[:remSmObjImageFileName.rfind('.')]+'smObjVal'+str(smObjVal)+'.png'
        imsave(reSmObjImageFilePath+biImageFileName, filledImg)



#findHvalue()
layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def load_image(self, idx):
        """
        Load input image and preprocess for Caffe:
    - resize image
        - cast to float
        - switch channels RGB -> BGR
        - subtract mean
        - transpose to channel x height x width order
        """
    idx=idx.split()[0]
    try:
            im = Image.open('{}/{}'.format(self.data_dir, idx))
    except:
        from skimage import io  
        im = io.imread('{}/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
    im=im.resize((self.width, self.height), Image.ANTIALIAS)    # resize image
        im = np.array(im, dtype=np.float32)             # cast to float
        im = im[:,:,::-1]                       # RGB -> BGR
        im -= self.mean                         # mean subtraction
    # bring colour to the innermost dimension
        im = im.transpose((2,0,1))
        return im
nyud_layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def load_image(self, idx):
        """
        Load input image and preprocess:
    - resize
        - cast to float
        - switch channels RGB -> BGR
        - subtract mean
        - transpose to channel x height x width order
        """
        idx = self.indices[idx]
    idx = idx.split()[0]
    im = io.imread('{}/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
        im = im.resize((self.width, self.height), Image.ANTIALIAS)   # resize image
        im = np.array(im, dtype=np.float32)              # cast to float
        im = im[:,:,::-1]                                            # RGB -> BGR
        im -= self.mean_bgr                      # mean subtraction
        im = im.transpose((2,0,1))
        return im
nyud_layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def load_label(self, idx):
        """
        Load binary mask and preprocess:
    - resize
    - convert to greyscale
    - cast to integer
    - binarize
        """
        idx = self.indices_label[idx]
        idx=idx.split()[0]
        im = io.imread('{}/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
        im=im.resize((self.width, self.height), Image.NEAREST)      # resize
        im=im.convert('L')                      # convert to greyscale
        im=np.array(im, dtype=(np.int32))               # cast to integer
        label=im
        label[label>0]=1                        # convert to binary
        label=np.array(label,np.uint8)
        label = label[np.newaxis, ...]
        return label
nyud_layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def load_depth(self, idx):
        """
        Load depth map and preprocess:
    - resize
    - cast to float
    - subtract mean
        """
        idx = self.indices_depth[idx]
        idx=idx.split()[0]
        im = io.imread('{}/depth/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
        im = im.resize((self.width, self.height), Image.ANTIALIAS)  # resize
        im = np.array(im, dtype=np.float32)             # cast to float
        d = im
        d -= self.mean_depth                        # mean subtraction
        d = d[np.newaxis, ...]
        return d
layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def load_image(self, idx):
        """
        Load input image and preprocess for Caffe:
    - resize image
        - cast to float
        - switch channels RGB -> BGR
        - subtract mean
        - transpose to channel x height x width order
        """
    idx=idx.split()[0]
    try:
            im = Image.open('{}/{}'.format(self.data_dir, idx))
    except:
        from skimage import io  
        im = io.imread('{}/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
    im=im.resize((self.width, self.height), Image.ANTIALIAS)    # resize image
        im = np.array(im, dtype=np.float32)             # cast to float
        im = im[:,:,::-1]                       # RGB -> BGR
        im -= self.mean                         # mean subtraction
    # bring colour to the innermost dimension
        im = im.transpose((2,0,1))
        return im
nyud_layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def load_image(self, idx):
        """
        Load input image and preprocess:
    - resize
        - cast to float
        - switch channels RGB -> BGR
        - subtract mean
        - transpose to channel x height x width order
        """
        idx = self.indices[idx]
    idx = idx.split()[0]
    im = io.imread('{}/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
        im = im.resize((self.width, self.height), Image.ANTIALIAS)   # resize image
        im = np.array(im, dtype=np.float32)              # cast to float
        im = im[:,:,::-1]                                            # RGB -> BGR
        im -= self.mean_bgr                      # mean subtraction
        im = im.transpose((2,0,1))
        return im
nyud_layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def load_label(self, idx):
        """
        Load binary mask and preprocess:
    - resize
    - convert to greyscale
    - cast to integer
    - binarize
        """
        idx = self.indices_label[idx]
        idx=idx.split()[0]
        im = io.imread('{}/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
        im=im.resize((self.width, self.height), Image.NEAREST)      # resize
        im=im.convert('L')                      # convert to greyscale
        im=np.array(im, dtype=(np.int32))               # cast to integer
        label=im
        label[label>0]=1                        # convert to binary
        label=np.array(label,np.uint8)
        label = label[np.newaxis, ...]
        return label
nyud_layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def load_depth(self, idx):
        """
        Load depth map and preprocess:
    - resize
    - cast to float
    - subtract mean
        """
        idx = self.indices_depth[idx]
        idx=idx.split()[0]
        im = io.imread('{}/depth/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
        im = im.resize((self.width, self.height), Image.ANTIALIAS)  # resize
        im = np.array(im, dtype=np.float32)             # cast to float
        d = im
        d -= self.mean_depth                        # mean subtraction
        d = d[np.newaxis, ...]
        return d
layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def load_image(self, idx):
        """
        Load input image and preprocess for Caffe:
    - resize image
        - cast to float
        - switch channels RGB -> BGR
        - subtract mean
        - transpose to channel x height x width order
        """
    idx=idx.split()[0]
    try:
            im = Image.open('{}/{}'.format(self.data_dir, idx))
    except:
        from skimage import io  
        im = io.imread('{}/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
    im=im.resize((self.width, self.height), Image.ANTIALIAS)    # resize image
        im = np.array(im, dtype=np.float32)             # cast to float
        im = im[:,:,::-1]                       # RGB -> BGR
        im -= self.mean                         # mean subtraction
    # bring colour to the innermost dimension
        im = im.transpose((2,0,1))
        return im
layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def load_image(self, idx):
        """
        Load input image and preprocess for Caffe:
    - resize image
        - cast to float
        - switch channels RGB -> BGR
        - subtract mean
        - transpose to channel x height x width order
        """
    idx=idx.split()[0]
    try:
            im = Image.open('{}/{}'.format(self.data_dir, idx))
    except:
        from skimage import io  
        im = io.imread('{}/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
    im=im.resize((self.width, self.height), Image.ANTIALIAS)    # resize image
        im = np.array(im, dtype=np.float32)             # cast to float
        im = im[:,:,::-1]                       # RGB -> BGR
        im -= self.mean                         # mean subtraction
    # bring colour to the innermost dimension
        im = im.transpose((2,0,1))
        return im
nyud_layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def load_image(self, idx):
        """
        Load input image and preprocess:
    - resize
        - cast to float
        - switch channels RGB -> BGR
        - subtract mean
        - transpose to channel x height x width order
        """
        idx = self.indices[idx]
    idx = idx.split()[0]
    im = io.imread('{}/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
        im = im.resize((self.width, self.height), Image.ANTIALIAS)   # resize image
        im = np.array(im, dtype=np.float32)              # cast to float
        im = im[:,:,::-1]                                            # RGB -> BGR
        im -= self.mean_bgr                      # mean subtraction
        im = im.transpose((2,0,1))
        return im
nyud_layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 39 收藏 0 点赞 0 评论 0
def load_label(self, idx):
        """
        Load binary mask and preprocess:
    - resize
    - convert to greyscale
    - cast to integer
    - binarize
        """
        idx = self.indices_label[idx]
        idx=idx.split()[0]
        im = io.imread('{}/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
        im=im.resize((self.width, self.height), Image.NEAREST)      # resize
        im=im.convert('L')                      # convert to greyscale
        im=np.array(im, dtype=(np.int32))               # cast to integer
        label=im
        label[label>0]=1                        # convert to binary
        label=np.array(label,np.uint8)
        label = label[np.newaxis, ...]
        return label
nyud_layers.py 文件源码 项目:cnn_polyp_detection 作者: odysszis 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def load_depth(self, idx):
        """
        Load depth map and preprocess:
    - resize
    - cast to float
    - subtract mean
        """
        idx = self.indices_depth[idx]
        idx=idx.split()[0]
        im = io.imread('{}/depth/{}'.format(self.data_dir, idx))
        im = Image.fromarray(im)
        im = im.resize((self.width, self.height), Image.ANTIALIAS)  # resize
        im = np.array(im, dtype=np.float32)             # cast to float
        d = im
        d -= self.mean_depth                        # mean subtraction
        d = d[np.newaxis, ...]
        return d
Bot.py 文件源码 项目:poeai 作者: nicholastoddsmith 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def SplitSave(self, p = 'TSD/Train/Images', wp = 'TSD/Train/Split'):
        '''
        #p:     #Dir contains images to split
        #wp:    #Dir to write split images  
        '''
        c = 0
        if not os.path.exists(wp):
            os.mkdir(wp)
        pdl = np.random.choice([fni for fni in os.listdir(p) if fni.startswith('di')], 32, replace = False)
        for i, fn in enumerate(pdl):
            print('{:4d}/{:4d}:\t{:s}'.format(i + 1, len(pdl), fn))
            #A = imread(os.path.join(p, fn))[0:-14, 1:-1]
            #A = self.GetScreen()
            #S = self.ts.DivideIntoSubimages(A).astype(np.uint8)
            A = imread(os.path.join(p, fn))[0:-12, 4:-4, :]
            S = self.ts.DivideIntoSubimages(A).astype(np.uint8)
            for i, Si in enumerate(S):
                imsave(os.path.join(wp, '{:03d}.png'.format(c)), Si)
                c += 1
evaluation_script.py 文件源码 项目:Sign-Language-Recognition 作者: achyudhk 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def load_images(self, test_list):

        """
            train_list : list of users to use for testing
            eg ["user_1", "user_2", "user_3"]
        """

        self.image_list = []

        for user in test_list:

            csv = "%s%s/%s_loc.csv" % (self.data_directory, user, user)

            with open(csv) as fh:
                data = [line.strip().split(',') for line in fh]

            for line in data[1:]:

                img_path, x1,y1,x2,y2, = line
                pos = tuple(map(int,(x1,y1,x2,y2)))
                letter = img_path[-6]

                img = io.imread("%s%s" % (self.data_directory, img_path))

                self.image_list.append((img, pos, letter))


问题


面经


文章

微信
公众号

扫码关注公众号