def getFeat(data):
normalize = True
visualize = False
block_norm = 'L2-Hys'
cells_per_block = [2,2]
pixels_per_cell = [20,20]
orientations = 9
gray = rgb2gray(data)/255.0
fd = hog(gray, orientations, pixels_per_cell, cells_per_block, block_norm, visualize, normalize)
return fd
python类hog()的实例源码
9_SlidingWindow+SVM+NMS_cam.py 文件源码
项目:SVM-classification-localization
作者: HandsomeHans
项目源码
文件源码
阅读 33
收藏 0
点赞 0
评论 0
8_SlidingWindow+SVM+NMS_image.py 文件源码
项目:SVM-classification-localization
作者: HandsomeHans
项目源码
文件源码
阅读 27
收藏 0
点赞 0
评论 0
def getFeat(data):
gray = rgb2gray(data)/255.0
fd = hog(gray, orientations, pixels_per_cell, cells_per_block, block_norm, visualize, normalize)
return fd
def _extract(self, images, coords, mapping, args):
assert images.shape[1] == images.shape[2]
n_inst = coords.shape[0]
nb = args.get('num_bins', 8)
win_sizes = args.get('window_sizes', 32)
win_sizes = win_sizes if isinstance(win_sizes, np.ndarray) else np.ones((n_inst,), dtype=np.int32) * win_sizes
# Prepare descriptors
descriptors = np.zeros(tuple(coords.shape[:2])+(nb*4*4,), dtype=np.float32)
# Fill descriptors
coords, vis = np.copy(coords), np.zeros(coords.shape[:2], dtype=np.bool)
for i, (c, mp, ws) in enumerate(zip(coords, mapping, win_sizes)):
hsize, qsize = ws/2, ws/4
# Pad image, set landmarks visibility
im, c = np.pad(images[mp, ...], ((hsize, hsize), (hsize, hsize)), 'constant', constant_values=0), c+hsize
ims = im.shape[0] - hsize
vis[i, :] = (c[:, 0] >= hsize) & (c[:, 1] >= hsize) & (c[:, 0] < ims) & (c[:, 1] < ims)
# Extract descriptors from each interest window
for j, (jc, jv) in enumerate(zip(c, vis[i, :])):
descriptors[i, j, :] = hog(
im[jc[0]-hsize:jc[0]+hsize, jc[1]-hsize:jc[1]+hsize],
orientations=nb,
pixels_per_cell=(qsize, qsize),
cells_per_block=(1, 1)
) if jv else 0
# Normalize descriptors, return extracted information
return descriptors.reshape((len(mapping), -1)), vis
def _extract(self, images, coords, mapping, args):
assert images.shape[1] == images.shape[2]
n_inst = coords.shape[0]
nb = args.get('num_bins', 8)
rotations = args.get('rotations', np.zeros((n_inst,), dtype=np.float32))
win_sizes = args.get('window_sizes', 32)
win_sizes = win_sizes if isinstance(win_sizes, np.ndarray) else np.ones((n_inst,), dtype=np.int32) * win_sizes
# Prepare descriptors
descriptors = np.zeros(tuple(coords.shape[:2])+(nb*4*4,), dtype=np.float32)
# Fill descriptors
coords, vis = np.copy(coords) - images.shape[1] / 2.0, np.empty(coords.shape[:2], dtype=np.bool)
for i, (c, r, mp, ws) in enumerate(zip(coords, rotations, mapping, win_sizes)):
hsize, qsize = ws/2, ws/4
# Get maximum window half-size, rotate and pad image
im = np.pad(
rotate(images[mp, ...], 57.2957*r),
((hsize, hsize), (hsize, hsize)),
'constant', constant_values=0
)
# Rotate geometry, set landmarks visibility
ims = im.shape[0] - hsize
c = np.dot(c, np.array([[np.cos(r), np.sin(r)], [-np.sin(r), np.cos(r)]])) + im.shape[0] / 2.0
vis[i, :] = (c[:, 0] >= hsize) & (c[:, 1] >= hsize) & (c[:, 0] < ims) & (c[:, 1] < ims)
# Extract descriptors from each interest window
for j, (jc, jv) in enumerate(zip(c, vis[i, :])):
descriptors[i, j, :] = hog(
im[jc[0]-hsize:jc[0]+hsize, jc[1]-hsize:jc[1]+hsize],
orientations=nb,
pixels_per_cell=(qsize, qsize),
cells_per_block=(1, 1)
) if jv else 0
# Normalize descriptors, return extracted information
return descriptors.reshape((len(mapping), -1)), vis
def extract_pos_hog_features2(path, num_samples):
features = []
cnt = 0
for dirpath, dirnames, filenames in walk(path):
for my_file in filenames:
if cnt < num_samples:
cnt = cnt + 1
im = cv2.imread(path + my_file)
image = color.rgb2gray(im)
my_feature, _ = hog(image, orientations=9, pixels_per_cell=(8, 8),cells_per_block=(2, 2), visualise=True)
features.append(my_feature)
return features
def neg_hog_rand(path, num_samples, window_size, num_window_per_image):
rows = window_size[0]
cols = window_size[1]
features = []
cnt = 0
for dirpath, dirnames, filenames in walk(path):
for my_file in filenames:
if cnt < num_samples:
print cnt,my_file
cnt = cnt + 1
im = cv2.imread(path + my_file)
image = color.rgb2gray(im)
image_rows = image.shape[0]
image_cols = image.shape[1]
for i in range(0,num_window_per_image):
x_min = random.randrange(0,image_rows - rows)
y_min = random.randrange(0,image_cols - cols)
x_max = x_min + rows
y_max = y_min + cols
image_hog = image[x_min:x_max , y_min:y_max]
my_feature, _ = hog(image_hog, orientations=9, pixels_per_cell=(8, 8),cells_per_block=(2, 2), visualise=True)
features.append(my_feature)
return features
def detector(my_im, weight,bias, scale):
window_size = [128, 64]
block_size = 4
cell_size = 8
min_height = 128
min_width = 64
orient = 9
thresh = 0
total_block_size = block_size * cell_size;
curr_depth = 0
for im in ip.createImagePyramid(my_im, scale, min_height, min_width):
curr_depth +=1
H = im.shape[0]
W = im.shape[1]
dim_size_feat = weight.shape[1];
for h in xrange(0,H,total_block_size / 2):
for w in xrange(0,W,total_block_size / 2):
if ((window_size[1] + w <= W) and (window_size[0]+h) <= H):
fd, _ = hog(im[h:(window_size[0]+h), w:(window_size[1]+w)], orientations=orient, pixels_per_cell=(cell_size, cell_size),
cells_per_block=(block_size, block_size), visualise=True)
score_calc = np.dot(np.reshape(fd, (1, dim_size_feat)) , np.transpose(weight)) + bias
if(score_calc[0][0] >= thresh):
print score_calc[0][0]
cv2.imshow("Detected Pedestrian", my_im)
cv2.waitKey(25)
return score_calc[0][0]
return False