python类adjust_sigmoid()的实例源码

edge_detector_cnn.py 文件源码 项目:nn-segmentation-for-lar 作者: cvdlab 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def predict_image(self, test_img):
        """
        predicts classes of input image
        :param test_img: filepath to image to predict on
        :param show: displays segmentation results
        :return: segmented result
        """
        img = np.array( rgb2gray( imread( test_img ).astype( 'float' ) ).reshape( 5, 216, 160 )[-2] ) / 256

        plist = []

        # create patches from an entire slice
        img_1 = adjust_sigmoid( img ).astype( float )
        edges_1 = adjust_sigmoid( img, inv=True ).astype( float )
        edges_2 = img_1
        edges_5_n = normalize( laplace( img_1 ) )
        edges_5_n = img_as_float( img_as_ubyte( edges_5_n ) )

        plist.append( extract_patches_2d( edges_1, (23, 23) ) )
        plist.append( extract_patches_2d( edges_2, (23, 23) ) )
        plist.append( extract_patches_2d( edges_5_n, (23, 23) ) )
        patches = np.array( zip( np.array( plist[0] ), np.array( plist[1] ), np.array( plist[2] ) ) )

        # predict classes of each pixel based on model
        full_pred = self.model.predict_classes( patches )
        fp1 = full_pred.reshape( 194, 138 )
        return fp1
__init__.py 文件源码 项目:scanify 作者: idf 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def run(self, imgin_path, imgout_path=None, increase_exposure=False):
        imgin_path = self.__expand_user(imgin_path)
        img = misc.imread(imgin_path)

        img_blurred = self.__blur(img)
        img = self.__divide(img, img_blurred)
        if increase_exposure:
            img = exposure.adjust_sigmoid(img)

        if not imgout_path:
            imgout_path = self.__add_suffix(imgin_path)
        misc.imsave(imgout_path, img)
        print("Saved to", imgout_path)
inputs.py 文件源码 项目:segmentation 作者: zengyu714 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _augment(xs):
    """Image adjustment doesn't change image shape, but for intensity.

    Return:
        images: 4-d tensor with shape [depth, height, width, channels]
    """

    # `xs` has shape [depth, height, width] with value in [0, 1].
    brt_gamma, brt_gain = np.random.uniform(low=0.9, high=1.1, size=2)
    aj_bright = adjust_gamma(xs, brt_gamma, brt_gain)
    contrast_gain = np.random.uniform(low=5, high=10)
    aj_contrast = adjust_sigmoid(aj_bright, gain=contrast_gain)
    return aj_contrast
prepro.py 文件源码 项目:deepsleepnet 作者: akaraspt 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def constant(x, cutoff=0.5, gain=10, inv=False, is_random=False):
    # TODO
    x = exposure.adjust_sigmoid(x, cutoff=cutoff, gain=gain, inv=inv)
    return x
prepro.py 文件源码 项目:dcgan 作者: zsdonghao 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def constant(x, cutoff=0.5, gain=10, inv=False, is_random=False):
    # TODO
    x = exposure.adjust_sigmoid(x, cutoff=cutoff, gain=gain, inv=inv)
    return x
prepro.py 文件源码 项目:Image-Captioning 作者: zsdonghao 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def constant(x, cutoff=0.5, gain=10, inv=False, is_random=False):
    # TODO
    x = exposure.adjust_sigmoid(x, cutoff=cutoff, gain=gain, inv=inv)
    return x
stomataobjects.py 文件源码 项目:stomatameasurer 作者: TeamMacLean 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def sigmoid_transform(img, cutoff=0.5):
    return exposure.adjust_sigmoid(img, cutoff)
perturb_images.py 文件源码 项目:emotion-detection-in-images 作者: davidjeffwen 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def contrast_enhance(img):
    return adjust_sigmoid(img, cutoff=0.5, gain=10)
prepro.py 文件源码 项目:tensorlayer-chinese 作者: shorxp 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def adjust_hue(im, hout=0.66, is_offset=True, is_clip=True, is_random=False):
    """ Adjust hue of an RGB image. This is a convenience method that converts an RGB image to float representation, converts it to HSV, add an offset to the hue channel, converts back to RGB and then back to the original data type.
    For TF, see `tf.image.adjust_hue <https://www.tensorflow.org/api_docs/python/tf/image/adjust_hue>`_ and `tf.image.random_hue <https://www.tensorflow.org/api_docs/python/tf/image/random_hue>`_.

    Parameters
    -----------
    im : should be a numpy arrays with values between 0 and 255.
    hout : float.
        - If is_offset is False, set all hue values to this value. 0 is red; 0.33 is green; 0.66 is blue.
        - If is_offset is True, add this value as the offset to the hue channel.
    is_offset : boolean, default True.
    is_clip : boolean, default True.
        - If True, set negative hue values to 0.
    is_random : boolean, default False.

    Examples
    ---------
    - Random, add a random value between -0.2 and 0.2 as the offset to every hue values.
    >>> im_hue = tl.prepro.adjust_hue(image, hout=0.2, is_offset=True, is_random=False)

    - Non-random, make all hue to green.
    >>> im_green = tl.prepro.adjust_hue(image, hout=0.66, is_offset=False, is_random=False)

    References
    -----------
    - `tf.image.random_hue <https://www.tensorflow.org/api_docs/python/tf/image/random_hue>`_.
    - `tf.image.adjust_hue <https://www.tensorflow.org/api_docs/python/tf/image/adjust_hue>`_.
    - `StackOverflow: Changing image hue with python PIL <https://stackoverflow.com/questions/7274221/changing-image-hue-with-python-pil>`_.
    """
    hsv = rgb_to_hsv(im)
    if is_random:
        hout = np.random.uniform(-hout, hout)

    if is_offset:
        hsv[...,0] += hout
    else:
        hsv[...,0] = hout

    if is_clip:
        hsv[...,0] = np.clip(hsv[...,0], 0, np.inf)  # Hao : can remove green dots

    rgb = hsv_to_rgb(hsv)
    return rgb


# # contrast
# def constant(x, cutoff=0.5, gain=10, inv=False, is_random=False):
#     # TODO
#     x = exposure.adjust_sigmoid(x, cutoff=cutoff, gain=gain, inv=inv)
#     return x
#
# def constant_multi():
#     #TODO
#     pass

# resize


问题


面经


文章

微信
公众号

扫码关注公众号