def get_data(image_id, a_size, m_size, p_size, sf):
rgb_data = get_rgb_data(image_id)
rgb_data = cv2.resize(rgb_data, (p_size*sf, p_size*sf),
interpolation=cv2.INTER_LANCZOS4)
# rgb_data = rgb_data.astype(np.float) / 2500.
# print(np.max(rgb_data), np.mean(rgb_data))
# rgb_data[:, :, 0] = exposure.equalize_adapthist(rgb_data[:, :, 0], clip_limit=0.04)
# rgb_data[:, :, 1] = exposure.equalize_adapthist(rgb_data[:, :, 1], clip_limit=0.04)
# rgb_data[:, :, 2] = exposure.equalize_adapthist(rgb_data[:, :, 2], clip_limit=0.04)
A_data = get_spectral_data(image_id, a_size*sf, a_size*sf, bands=['A'])
M_data = get_spectral_data(image_id, m_size*sf, m_size*sf, bands=['M'])
P_data = get_spectral_data(image_id, p_size*sf, p_size*sf, bands=['P'])
# lab_data = cv2.cvtColor(rgb_data, cv2.COLOR_BGR2LAB)
P_data = np.concatenate([rgb_data, P_data], axis=2)
return A_data, M_data, P_data
python类equalize_adapthist()的实例源码
b3_data_iter.py 文件源码
项目:kaggle-dstl-satellite-imagery-feature-detection
作者: u1234x1234
项目源码
文件源码
阅读 23
收藏 0
点赞 0
评论 0
def clahe_normalization(img, kernel_size=3, nbins=1024, clip_limit=0.3):
'''Contrast Limited Adaptive Histogram Equalization (CLAHE).'''
return equalize_adapthist(img, kernel_size, nbins, clip_limit)
def scaling(image, method="stretching"):
"""
Change the image dynamic.
Parameters
----------
image: Image
the image to be transformed.
method: str, default 'stretching'
the normalization method: 'stretching', 'equalization' or 'adaptive'.
Returns
-------
normalize_image: Image
the normalized image.
"""
# Contrast stretching
if method == "stretching":
p2, p98 = np.percentile(image.data, (2, 98))
norm_data = exposure.rescale_intensity(image.data, in_range=(p2, p98))
# Equalization
elif method == "equalization":
norm_data = exposure.equalize_hist(image.data)
# Adaptive Equalization
elif method == "adaptive":
norm_data = exposure.equalize_adapthist(image.data, clip_limit=0.03)
# Unknown method
else:
raise ValueError("Unknown normalization '{0}'.".format(method))
normalize_image = pisap.Image(data=norm_data)
return normalize_image
def normalize_histo(image, gamma=1.0):
"""
Perform histogram normalization on image.
:param numpy array image: Numpy array with range [0,255] and dtype 'uint8'.
:param float gamma: Factor for gamma adjustment.
:return: Normalized image
:rtype: numpy array with range [0,255] and dtype 'uint8'
"""
image = ske.equalize_adapthist(image)
image = ske.adjust_gamma(image, gamma=gamma)
return floatimg2uint8(image)
def equalize_adapthist(img, val=None):
return exposure.equalize_adapthist(img)