python类polygon()的实例源码

util.py 文件源码 项目:initialisation-problem 作者: georgedeath 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def superpixel_image(image, bbox, Nsp_min=100, Nsp_max=500, Nsp_npx=50):
    """
    Superpixels an image using slic0 and labels them 1 if they are 100%
    inside the bounding box, 0 otherwise.

    Arguments:
        image = MxNxD
        bbox = 
        Nsp_npx = number of pixels per superpixel (on avg) we're aiming for
        Nsp_min = (approx) min number of superpixels in cropped region
        Nsp_max = (approx) max number of superpixels in cropped region

    Output:
        segments = MxN label image where each pixel's value represents the 
                   superpixel it belongs to.
        sp_label = boolean vector containing segments.max()+1 entries 
                   corresponding to the label of the superpixel, with 1
                   indicating 100% inside the bounding box, 0 otherwise.
    """
    bbox_aa = bbox_to_axis_aligned_bbox(bbox)

    # calculate number of superpixels to aim for
    n_sp = np.rint(bbox_aa[2] * bbox_aa[3] / Nsp_npx).astype('int')
    n_sp = np.max([Nsp_min, np.min([Nsp_max, n_sp])])

    # segment the image using SLIC0
    segments = slic(image, n_segments=n_sp, slic_zero=True, 
                    enforce_connectivity=True)
    n_sp = segments.max()+1 # actual number of superpixels

    # create mask for outside of bounding box
    bbox_mask = np.zeros(image.shape[:2], dtype='bool')
    x, y = polygon(bbox[::2], bbox[1::2])
    bbox_mask[y, x] = True

    # label superpixels - 0 = 100% outside bbox, 1 = some overlap with bbox
    sp_label = np.zeros((n_sp), dtype='bool') 

    for n in range(n_sp):
        # label n'th sp as inside bbox if any of its pixels overlap the bbox
        if np.any((segments == n) & bbox_mask):
            sp_label[n] = True

    return segments, sp_label
coco.py 文件源码 项目:py-faster-rcnn-resnet-imagenet 作者: tianzhi0549 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:focal-loss 作者: unsky 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:odnl 作者: lilhope 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print(ann['caption'])
coco.py 文件源码 项目:RON 作者: taokong 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:visually-informed-embedding-of-word-VIEW- 作者: oswaldoludwig 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            n=0
            cap= [None] * 5
            for ann in anns:
                #print ann['caption']
                if n<5:
                    cap[n]=ann['caption']
                #print cap[n]
                n = n + 1
                print n
            print cap
            return cap
coco.py 文件源码 项目:face-py-faster-rcnn 作者: playerkk 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:deep-fashion 作者: zuowang 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:Deformable-ConvNets 作者: msracver 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:RPN 作者: hfut721 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:TFFRCNN 作者: InterVideo 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:faster_rcnn_logo 作者: romyny 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:TF_Deformable_Net 作者: Zardinality 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print(ann['caption'])
coco.py 文件源码 项目:Faster_RCNN_Training_Toolkit 作者: VerseChow 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:DeepMIML 作者: kingfengji 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:image_captioning 作者: DeepRNN 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            ax.set_autoscale_on(False)
            polygons = []
            color = []
            for ann in anns:
                c = (np.random.random((1, 3))*0.6+0.4).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
                if 'keypoints' in ann and type(ann['keypoints']) == list:
                    # turn skeleton into zero-based index
                    sks = np.array(self.loadCats(ann['category_id'])[0]['skeleton'])-1
                    kp = np.array(ann['keypoints'])
                    x = kp[0::3]
                    y = kp[1::3]
                    v = kp[2::3]
                    for sk in sks:
                        if np.all(v[sk]>0):
                            plt.plot(x[sk],y[sk], linewidth=3, color=c)
                    plt.plot(x[v==1], y[v==1],'o',markersize=8, markerfacecolor=c, markeredgecolor='k',markeredgewidth=2)
                    plt.plot(x[v==2], y[v==2],'o',markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2)
            p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4)
            ax.add_collection(p)
            p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:ohem 作者: abhi2610 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:py-faster-rcnn-dockerface 作者: natanielruiz 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']
coco.py 文件源码 项目:TFFRCNN 作者: CharlesShang 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def showAnns(self, anns):
        """
        Display the specified annotations.
        :param anns (array of object): annotations to display
        :return: None
        """
        if len(anns) == 0:
            return 0
        if 'segmentation' in anns[0]:
            datasetType = 'instances'
        elif 'caption' in anns[0]:
            datasetType = 'captions'
        if datasetType == 'instances':
            ax = plt.gca()
            polygons = []
            color = []
            for ann in anns:
                c = np.random.random((1, 3)).tolist()[0]
                if type(ann['segmentation']) == list:
                    # polygon
                    for seg in ann['segmentation']:
                        poly = np.array(seg).reshape((len(seg)/2, 2))
                        polygons.append(Polygon(poly, True,alpha=0.4))
                        color.append(c)
                else:
                    # mask
                    t = self.imgs[ann['image_id']]
                    if type(ann['segmentation']['counts']) == list:
                        rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width'])
                    else:
                        rle = [ann['segmentation']]
                    m = mask.decode(rle)
                    img = np.ones( (m.shape[0], m.shape[1], 3) )
                    if ann['iscrowd'] == 1:
                        color_mask = np.array([2.0,166.0,101.0])/255
                    if ann['iscrowd'] == 0:
                        color_mask = np.random.random((1, 3)).tolist()[0]
                    for i in range(3):
                        img[:,:,i] = color_mask[i]
                    ax.imshow(np.dstack( (img, m*0.5) ))
            p = PatchCollection(polygons, facecolors=color, edgecolors=(0,0,0,1), linewidths=3, alpha=0.4)
            ax.add_collection(p)
        elif datasetType == 'captions':
            for ann in anns:
                print ann['caption']


问题


面经


文章

微信
公众号

扫码关注公众号