python类rgb2gray()的实例源码

transform.py 文件源码 项目:Imagyn 作者: zevisert 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def seam_carve(img):
    """
    Seam carve image
    :param img: PIL image object
    :return: PIL image object
    """
    # Convert to skimage image
    img_to_convert = img.copy()
    img_to_convert = pil_to_skimage(img_to_convert)

    # Energy Map, used to determine which pixels will be removed
    eimg = filters.sobel(color.rgb2gray(img_to_convert))

    # (height, width)
    img_dimensions = img_to_convert.shape

    # Squish width if width >= height, squish height if height > width
    # Number of pixels to keep along the outer edges (5% of largest dimension)
    # Number of seams to be removed, (1 to 10% of largest dimension)
    if img_dimensions[1] >= img_dimensions[0]:
        mode = "horizontal"
        border = round(img_dimensions[1] * 0.05)
        num_seams = random.randint(1, round(0.1*img_dimensions[1]))

    else:
        mode = "vertical" 
        border = round(img_dimensions[0] * 0.05)
        num_seams = random.randint(1, round(0.1*img_dimensions[0]))

    try:
        img_to_convert = transform.seam_carve(img_to_convert, eimg, mode, num_seams, border)

    except Exception as e:
        print("Unable to seam_carve: " + str(e))

    # Convert back to PIL image
    img_to_convert = skimage_to_pil(img_to_convert)

    return img_to_convert
datasets.py 文件源码 项目:e2c-pytorch 作者: ethanluoyc 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, root, split):
        if split not in ['train', 'test', 'all']:
            raise ValueError

        dir = os.path.join(root, split)
        filenames = glob.glob(os.path.join(dir, '*.png'))

        if split == 'all':
            filenames = glob.glob(os.path.join(root, 'train/*.png'))
            filenames.extend(glob.glob(os.path.join(root, 'test/*.png')))

        filenames = sorted(
            filenames, key=lambda x: int(os.path.basename(x).split('.')[0]))

        images = []

        for f in filenames:
            img = plt.imread(f)
            img[img != 1] = 0
            images.append(resize(rgb2gray(img), [48, 48], mode='constant'))

        self.images = np.array(images, dtype=np.float32)
        self.images = self.images.reshape([len(images), 48, 48, 1])

        action_filename = os.path.join(root, 'actions.txt')

        with open(action_filename) as infile:
            actions = np.array([float(l) for l in infile.readlines()])

        self.actions = actions[:len(self.images)].astype(np.float32)
        self.actions = self.actions.reshape(len(actions), 1)
datasets.py 文件源码 项目:e2c-pytorch 作者: ethanluoyc 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def all_states(cls):
        _env = gym.make('Pendulum-v0').env
        width = GymPendulumDataset.width
        height = GymPendulumDataset.height
        X = np.zeros((360, width, height))

        for i in range(360):
            th = i / 360. * 2 * np.pi
            state = _env.render_state(th)
            X[i, :, :] = resize(rgb2gray(state), (width, height), mode='reflect')
        _env.close()
        _env.viewer.close()
        return X
imageutil.py 文件源码 项目:nuts-ml 作者: maet3608 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def load_image(filepath, as_grey=False, dtype='uint8', no_alpha=True):
    """
    Load image as numpy array from given filepath.

    Supported formats: gif, png, jpg, bmp, tif, npy

    >>> img = load_image('tests/data/img_formats/nut_color.jpg')
    >>> shapestr(img)
    '213x320x3'

    :param string filepath: Filepath to image file or numpy array.
    :param bool as_grey:
    :return: numpy array with shapes
             (h, w) for grayscale or monochrome,
             (h, w, 3) for RGB (3 color channels in last axis)
             (h, w, 4) for RGBA (for no_alpha = False)
             (h, w, 3) for RGBA (for no_alpha = True)
             pixel values are in range [0,255] for dtype = uint8
    :rtype: numpy ndarray
    """
    if filepath.endswith('.npy'):  # image as numpy array
        arr = np.load(filepath).astype(dtype)
        arr = rgb2gray(arr) if as_grey else arr
    else:
        # img_num=0 due to 
        # https://github.com/scikit-image/scikit-image/issues/2406
        arr = ski.imread(filepath, as_grey=as_grey, img_num=0).astype(dtype)
    if arr.ndim == 3 and arr.shape[2] == 4 and no_alpha:
        arr = arr[..., :3]  # cut off alpha channel
    return arr
imageutil.py 文件源码 项目:nuts-ml 作者: maet3608 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def rgb2gray(image):
    """
    RGB scale image to grayscale image

    >>> image = np.eye(3, dtype='uint8') * 255
    >>> rgb2gray(image)
    array([[255,   0,   0],
           [  0, 255,   0],
           [  0,   0, 255]], dtype=uint8)

    :param numpy array image: Numpy array with range [0,255] and dtype 'uint8'. 
    :return: grayscale image
    :rtype:  numpy array with range [0,255] and dtype 'uint8'
    """
    return floatimg2uint8(skc.rgb2gray(image))
agent.py 文件源码 项目:DQN 作者: pekaalto 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def process_image(img):
        return 2 * color.rgb2gray(transform.rescale(img[34:194], 0.5)) - 1
agent.py 文件源码 项目:DQN 作者: pekaalto 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def process_image(obs):
        return 2 * color.rgb2gray(obs) - 1.0
dqn.py 文件源码 项目:dqn 作者: elix-tech 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_initial_state(self, observation, last_observation):
        processed_observation = np.maximum(observation, last_observation)
        processed_observation = np.uint8(resize(rgb2gray(processed_observation), (FRAME_WIDTH, FRAME_HEIGHT)) * 255)
        state = [processed_observation for _ in xrange(STATE_LENGTH)]
        return np.stack(state, axis=0)
dqn.py 文件源码 项目:dqn 作者: elix-tech 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def preprocess(observation, last_observation):
    processed_observation = np.maximum(observation, last_observation)
    processed_observation = np.uint8(resize(rgb2gray(processed_observation), (FRAME_WIDTH, FRAME_HEIGHT)) * 255)
    return np.reshape(processed_observation, (1, FRAME_WIDTH, FRAME_HEIGHT))
havakv_atari_multi.py 文件源码 项目:oslodatascience-rl 作者: Froskekongen 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def preprocessImage(self, img):
        '''Compute luminance (grayscale in range [0, 1]) and resize to (D, D).'''
        img = rgb2gray(img) # compute luminance 210x160
        img = resize(img, (self.agent.D, self.agent.D), mode='constant') # resize image
        return img
havakv_atari.py 文件源码 项目:oslodatascience-rl 作者: Froskekongen 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def preprocessImage(self, img):
        '''Compute luminance (grayscale in range [0, 1]) and resize to (D, D).'''
        img = rgb2gray(img) # compute luminance 210x160
        img = resize(img, (self.D, self.D), mode='constant') # resize image
        return img
havakv_a2c.py 文件源码 项目:oslodatascience-rl 作者: Froskekongen 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _preprocessImage(self, img):
        '''Compute luminance (grayscale in range [0, 1]) and resize to (D, D).'''
        img = rgb2gray(img) # compute luminance 210x160
        img = resize(img, (self.agent.D, self.agent.D), mode='constant') # resize image
        return img
compute_figure.py 文件源码 项目:mrflow 作者: jswulff 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def plot_figure_video_rigidity_example(image, rigidity):
    # Figure 93
    PTH='./figure_rigidity_example/'
    if not os.path.isdir(PTH):
        os.makedirs(PTH)

    I_bw = color.rgb2gray(image)
    I_bw = np.dstack((I_bw,I_bw,I_bw))*0.5

    I_bw[:,:,0][rigidity==1] += 0.5
    I_bw[:,:,2][rigidity==0] += 0.5

    io.imsave(PTH+'image.png', image)
    io.imsave(PTH+'rigidity.png', I_bw)
atari_environment.py 文件源码 项目:tensorflow-rl 作者: steveKapturowski 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def get_preprocessed_frame(self, observation):
        if isinstance(self.env.observation_space, Discrete):
            expanded_obs = np.zeros(self.env.observation_space.n, dtype=np.float32)
            expanded_obs[observation] = 1
            return expanded_obs
        elif len(observation.shape) > 1:
            if not self.use_rgb:
                observation = rgb2gray(observation)
            return resize(observation, (self.resized_width, self.resized_height))
        else:
            return observation
image_handler.py 文件源码 项目:harpreif 作者: harpribot 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_puzzle_pieces(self):
        """
        returns the puzzle pieces, as well as their true locations in row major numbering format, as a dictionary,
        where the key, is row_major puzzle_piece_id and the value is the piece image itself
        :return: The dictionary of piece_id => piece_image
        """
        result = dict()
        for piece_id, piece in enumerate(self.tiles):
            piece_image = np.array(piece.image)
            result[piece_id] = rgb2gray(piece_image)

        return result
gesture_recognizer.py 文件源码 项目:Sign-Language-Recognition 作者: achyudhk 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def hog_gen_windows(work_tuple):
    image_arr, coords = work_tuple
    lx1,ly1,rx1,ry1 = coords
    if image_arr.ndim > 2:
        image_arr = resize(color.rgb2gray(image_arr)[ly1:ry1, lx1:rx1], (120, 120))
    hog_image_rescaled = generate_hog_features(image_arr)
    return hog_image_rescaled
gesture_recognizer.py 文件源码 项目:Sign-Language-Recognition 作者: achyudhk 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def hog_gen(image, path=0):
    if path != 0 and image == 0:
        image = imread(path)
    if image.ndim > 2:
        image = color.rgb2gray(image)
    hog_image_rescaled = generate_hog_features(image)
    return hog_image_rescaled
gesture_recognizer.py 文件源码 项目:Sign-Language-Recognition 作者: achyudhk 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def generate_test_set(color_img):
    img_arr = color.rgb2gray(color_img)
    img_transformed = resize(img_arr, output_shape=(120, 120))
    hog_image = generate_hog_features(img_transformed)
    return hog_image
preprocessing.py 文件源码 项目:Sign-Language-Recognition 作者: achyudhk 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def generate_hog_features(filename):
    input_image = io.imread(filename)
    gray_image = color.rgb2gray(input_image)
    # 87% for orientations=8, pixels_per_cell=(4, 4), cells_per_block=(1, 1)
    fd, hog_image = hog(gray_image, orientations=8, pixels_per_cell=(4, 4),
                        cells_per_block=(1, 1), visualise=True)
    hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02))
    return hog_image_rescaled
preprocessing.py 文件源码 项目:Sign-Language-Recognition 作者: achyudhk 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def save_hog_image_comparison(filename):
    input_image = io.imread(filename)
    gray_image = color.rgb2gray(input_image)
    out_filename = "hog/" + filename

    # 87% for orientations=8, pixels_per_cell=(4, 4), cells_per_block=(1, 1)
    fd, hog_image = hog(gray_image, orientations=8, pixels_per_cell=(4, 4),
                        cells_per_block=(1, 1), visualise=True)
    # io.imsave("hog/" + filename, hog_image)
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True)

    ax1.axis('off')
    ax1.imshow(gray_image, cmap=plt.cm.gray)
    ax1.set_title('Input image')
    ax1.set_adjustable('box-forced')

    # Rescale histogram for better display
    hog_image_rescaled = exposure.rescale_intensity(hog_image, in_range=(0, 0.02))
    ax2.axis('off')
    ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray)
    ax2.set_title('Histogram of Oriented Gradients')
    ax1.set_adjustable('box-forced')
    plt.savefig(out_filename)
    plt.close()

    return hog_image


问题


面经


文章

微信
公众号

扫码关注公众号