python类rgb2gray()的实例源码

helpers.py 文件源码 项目:iterative_inference_segm 作者: adri-romsor 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def my_label2rgboverlay(labels, colors, image, alpha=0.2):
    """
    Generates image with segmentation labels on top

    Parameters
    ----------
    labels:  labels of one image (0, 1)
    colors:  colormap
    image:   image (0, 1, c), where c=3 (rgb)
    alpha: transparency
    """
    image_float = gray2rgb(img_as_float(rgb2gray(image) if
                                        image.shape[2] == 3 else
                                        np.squeeze(image)))
    label_image = my_label2rgb(labels, colors)
    output = image_float * alpha + label_image * (1 - alpha)
    return output
myimgfolder.py 文件源码 项目:colorNet-pytorch 作者: shufanwu 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __getitem__(self, index):
        path, target = self.imgs[index]
        img = self.loader(path)
        if self.transform is not None:
            img_original = self.transform(img)
            img_original = np.asarray(img_original)

            img_lab = rgb2lab(img_original)
            img_lab = (img_lab + 128) / 255
            img_ab = img_lab[:, :, 1:3]
            img_ab = torch.from_numpy(img_ab.transpose((2, 0, 1)))
            img_original = rgb2gray(img_original)
            img_original = torch.from_numpy(img_original)
        if self.target_transform is not None:
            target = self.target_transform(target)
        return (img_original, img_ab), target
myimgfolder.py 文件源码 项目:colorNet-pytorch 作者: shufanwu 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __getitem__(self, index):
        path, target = self.imgs[index]
        img = self.loader(path)

        img_scale = img.copy()
        img_original = img
        img_scale = scale_transform(img_scale)

        img_scale = np.asarray(img_scale)
        img_original = np.asarray(img_original)

        img_scale = rgb2gray(img_scale)
        img_scale = torch.from_numpy(img_scale)
        img_original = rgb2gray(img_original)
        img_original = torch.from_numpy(img_original)
        return (img_original, img_scale), target
utils.py 文件源码 项目:chinese_generation 作者: polaroidz 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def batch_generator(batch_size, nb_batches):
    batch_count = 0

    while True:
        pos = batch_count * batch_size
        batch = dataset[pos:pos+batch_size]

        X = np.zeros((batch_size, 1, img_size, img_size), dtype=np.float32)

        for k, path in enumerate(batch):
            im = io.imread(path)
            im = color.rgb2gray(im)

            X[k] = im[np.newaxis, ...]

        X = torch.from_numpy(X)
        X = Variable(X)

        yield X, batch

        batch_count += 1

        if batch_count > nb_batches:
            batch_count = 0
convert_play.py 文件源码 项目:tefla 作者: litan 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def convert_new(fname, target_size):
    print('Processing image: %s' % fname)
    img = Image.open(fname)
    blurred = img.filter(ImageFilter.BLUR)
    ba = np.array(blurred)
    ba_gray = rgb2gray(ba)
    val = filters.threshold_otsu(ba_gray)
    # foreground = (ba_gray > val).astype(np.uint8)
    foreground = closing(ba_gray > val, square(3))
    # kernel = morphology.rectangle(5, 5)
    # foreground = morphology.binary_dilation(foreground, kernel)
    labels = measure.label(foreground)
    properties = measure.regionprops(labels)
    properties = sorted(properties, key=lambda p: p.area, reverse=True)
    # draw_top_regions(properties, 3)
    # return ba
    bbox = properties[0].bbox
    bbox = (bbox[1], bbox[0], bbox[3], bbox[2])
    cropped = img.crop(bbox)
    resized = cropped.resize([target_size, target_size])
    return np.array(resized)
convert_play.py 文件源码 项目:tefla 作者: litan 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def convert_new_regions(fname, target_size):
    print('Processing image: %s' % fname)
    img = Image.open(fname)
    blurred = img.filter(ImageFilter.BLUR)
    ba = np.array(blurred)
    ba_gray = rgb2gray(ba)
    val = filters.threshold_otsu(ba_gray)
    # foreground = (ba_gray > val).astype(np.uint8)
    foreground = closing(ba_gray > val, square(3))
    # kernel = morphology.rectangle(5, 5)
    # foreground = morphology.binary_dilation(foreground, kernel)
    labels = measure.label(foreground)
    properties = measure.regionprops(labels)
    properties = sorted(properties, key=lambda p: p.area, reverse=True)
    draw_top_regions(properties, 3)
    return ba
convert.py 文件源码 项目:tefla 作者: litan 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def convert(fname, target_size):
    # print('Processing image: %s' % fname)
    img = Image.open(fname)
    blurred = img.filter(ImageFilter.BLUR)
    ba = np.array(blurred)
    ba_gray = rgb2gray(ba)
    val = filters.threshold_otsu(ba_gray)
    # foreground = (ba_gray > val).astype(np.uint8)
    foreground = closing(ba_gray > val, square(3))
    # kernel = morphology.rectangle(5, 5)
    # foreground = morphology.binary_dilation(foreground, kernel)
    labels = measure.label(foreground)
    properties = measure.regionprops(labels)
    properties = sorted(properties, key=lambda p: p.area, reverse=True)
    # draw_top_regions(properties, 3)
    # return ba
    bbox = properties[0].bbox
    bbox = (bbox[1], bbox[0], bbox[3], bbox[2])
    cropped = img.crop(bbox)
    resized = cropped.resize([target_size, target_size])
    return resized
fusion-classify.py 文件源码 项目:toothless 作者: ratt-ru 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def fits2jpg(fname):
    hdu_list = fits.open(fname)
    image = hdu_list[0].data
    image = np.squeeze(image)
    img = np.copy(image)
    idx = np.isnan(img)
    img[idx] = 0
    img_clip = np.flipud(img)
    sigma = 3.0
    # Estimate stats
    mean, median, std = sigma_clipped_stats(img_clip, sigma=sigma, iters=10)
    # Clip off n sigma points
    img_clip = clip(img_clip,std*sigma)
    if img_clip.shape[0] !=150 or img_clip.shape[1] !=150:
        img_clip = resize(img_clip, (150,150))
    #img_clip = rgb2gray(img_clip)

    outfile = fname[0:-5] +'.png'
    imsave(outfile, img_clip)
    return img_clip,outfile




# Do the fusion classification
image_handler.py 文件源码 项目:harpreif 作者: harpribot 项目源码 文件源码 阅读 82 收藏 0 点赞 0 评论 0
def load_next_image(self):
        """
        Loads next image from train index for training.
        :return: True if the next image is present, else False
        """
        if len(self.image_list) == self.image_ptr:
            return False
        sys.stderr.write('Loaded Image #' + str(self.image_ptr) + ' ...\n')
        self.image = ndimage.imread(self.image_list[self.image_ptr])
        is_color = self.__check_color()
        if is_color:
            self.image = rgb2gray(self.image)

        assert self.image.shape == (256, 256), 'Image not 256 x 256'
        self.__break_into_jigzaw_pieces()
        self.image_ptr += 1
        self.tries = 1

        return True
image_loader.py 文件源码 项目:harpreif 作者: harpribot 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def load_next_image(self):
        """
        Loads next image from train index for training.
        :return: True if the next image is present, else False
        """
        if len(self.image_list) == self.image_ptr:
            return False
        print 'Loaded New Image'
        self.image = ndimage.imread(self.image_list[self.image_ptr])
        self.image_name = self.image_list[self.image_ptr]

        is_color = self.__check_color()
        if is_color:
            self.image = rgb2gray(self.image)

        assert self.image.shape == (256, 256), 'Image not 256 x 256'
        self.image_ptr += 1

        return True
neural.py 文件源码 项目:ml-traffic 作者: Zepheus 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def postprocess(imgs, size, grayscale=False):
    print("Postprocessing images and resize (at %d)" % size)
    keyname = ('gray_%d' if grayscale else 'color_%d') % size
    for img in imgs:

        # Continue if already calculated
        if img.isSetByName(keyname):
            continue

        floatimg = img_as_float(img.image)
        floatimg = resize(floatimg, (size, size))
        if grayscale:
            floatimg = rgb2gray(floatimg)
        img.setByName(keyname, floatimg)  # expect to return floats


# Augment images
Pong_PolicyGradient.py 文件源码 项目:Reinforcement_Learning 作者: jcwleo 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def pre_proc(X):
    '''????? ???.

    Args:
        X(np.array): ??? ???? ??? ???? ? 84X84? ????
            ??? ????? ??????(??? ?? ??? ??) 255? ??

    Returns:
        np.array: ??? ???
    '''
    # ?? ? frame? ???? max? ????? flickering? ??
    # x = np.maximum(X, X1)
    # ??? ????? ????? ?? ??? ?? ??
    x = np.uint8(resize(rgb2gray(X), (HEIGHT, WIDTH), mode='reflect') * 255)

    return x
Pong_A2C_episodic.py 文件源码 项目:Reinforcement_Learning 作者: jcwleo 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def pre_proc(X):
    '''????? ???.

    Args:
        X(np.array): ??? ???? ??? ???? ? 84X84? ????
            ??? ????? ??????(??? ?? ??? ??) 255? ??

    Returns:
        np.array: ??? ???
    '''
    # ?? ? frame? ???? max? ????? flickering? ??
    # x = np.maximum(X, X1)
    # ??? ????? ????? ?? ??? ?? ??
    x = np.uint8(resize(rgb2gray(X), (HEIGHT, WIDTH), mode='reflect') * 255)

    return x
mask_retina.py 文件源码 项目:qtim_ROP 作者: QTIM-Lab 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def create_mask(im_arr, erode=0):

    if im_arr.shape[2] == 3:
        im_arr = rgb2gray(im_arr)

    thresh = 0.05
    inv_bin = np.invert(im_arr > thresh)
    all_labels = measure.label(inv_bin)

    # Select largest object and invert
    seg_arr = all_labels == 0

    if erode > 0:
        strel = selem.disk(erode, dtype=np.bool)
        seg_arr = binary_erosion(seg_arr, selem=strel)
    elif erode < 0:
        strel = selem.disk(abs(erode), dtype=np.bool)
        seg_arr = binary_dilation(seg_arr, selem=strel)

    return seg_arr.astype(np.bool)
data_loader.py 文件源码 项目:mcv-m5 作者: david-vazquez 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def load_img(path, grayscale=False, resize=None, order=1):
    # Load image
    img = io.imread(path)

    # Resize
    # print('Desired resize: ' + str(resize))
    if resize is not None:
        img = skimage.transform.resize(img, resize, order=order,
                                       preserve_range=True)
        # print('Final resize: ' + str(img.shape))

    # Color conversion
    if len(img.shape)==2 and not grayscale:
        img = gray2rgb(img)
    elif len(img.shape)>2 and img.shape[2]==3 and grayscale:
        img = rgb2gray(img)

    # Return image
    return img
edge_detector_cnn.py 文件源码 项目:nn-segmentation-for-lar 作者: cvdlab 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def predict_image(self, test_img):
        """
        predicts classes of input image
        :param test_img: filepath to image to predict on
        :param show: displays segmentation results
        :return: segmented result
        """
        img = np.array( rgb2gray( imread( test_img ).astype( 'float' ) ).reshape( 5, 216, 160 )[-2] ) / 256

        plist = []

        # create patches from an entire slice
        img_1 = adjust_sigmoid( img ).astype( float )
        edges_1 = adjust_sigmoid( img, inv=True ).astype( float )
        edges_2 = img_1
        edges_5_n = normalize( laplace( img_1 ) )
        edges_5_n = img_as_float( img_as_ubyte( edges_5_n ) )

        plist.append( extract_patches_2d( edges_1, (23, 23) ) )
        plist.append( extract_patches_2d( edges_2, (23, 23) ) )
        plist.append( extract_patches_2d( edges_5_n, (23, 23) ) )
        patches = np.array( zip( np.array( plist[0] ), np.array( plist[1] ), np.array( plist[2] ) ) )

        # predict classes of each pixel based on model
        full_pred = self.model.predict_classes( patches )
        fp1 = full_pred.reshape( 194, 138 )
        return fp1
brain_tumor_segmentation_models.py 文件源码 项目:nn-segmentation-for-lar 作者: cvdlab 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def predict_image(self, test_img):
        """
        predicts classes of input image
        :param test_img: filepath to image to predict on
        :return: segmented result
        """
        # imgs = io.imread(test_img).astype('float').reshape(5, 216, 160)
        imgs = mpimg.imread(test_img).astype('float')
        imgs = rgb2gray(imgs).reshape(5, 216, 160)

        plist = []

        # create patches_to_predict from an entire slice
        for img in imgs[:-1]:
            if np.max(img) != 0:
                img /= np.max(img)
            p = extract_patches_2d(img, (33, 33))
            plist.append(p)
        patches_to_predict = np.array(
            zip(np.array(plist[0]), np.array(plist[1]), np.array(plist[2]), np.array(plist[3])))

        # predict classes of each pixel based on model
        full_pred = self.model.predict_classes(patches_to_predict)
        fp1 = full_pred.reshape(184, 128)
        return fp1
Art_class.py 文件源码 项目:artorithmia 作者: alichtner 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def extract_blur(self, plot=False):
        """
        Calculate the variance of the 2nd derivative of the image to get blur.

        Input:  plot (bool) whether or not to show the image after Laplacian
        Output: None"""
        # do on grayscale
        # check what the mean would give instead of variance
        self.bluriness = filters.laplace(color.rgb2gray(self.image)).var()
        if plot is True:
            sns.set_style("whitegrid", {'axes.grid': False})
            self.lap = filters.laplace(color.rgb2gray(self.image))
            plt.imshow(self.lap)
            plt.title('Laplacian of {}'.format(self.short_name))
            plt.show()
            plt.imshow(self.lap)
            plt.show()
Art_class.py 文件源码 项目:artorithmia 作者: alichtner 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def extract_symmetry(self):
        """
        Calculate the symmetry of the image by substracting left from right.

        Input:  None
        Output: None
        """
        # currently this is only for horizontal symmetry
        if len(self.image.shape) == 3:
            height, width, _ = self.image.shape
        else:
            height, width = self.image.shape
        if width % 2 != 0:
            width -= 1
            pixels = height * width
            left = self.image[:, :width/2]
            right = self.image[:, width/2:-1]
        else:
            pixels = height * width
            left = self.image[:, :width/2]
            right = self.image[:, width/2:]
        left_gray = color.rgb2gray(left)
        right_gray = color.rgb2gray(right)
        self.symmetry = np.abs(left_gray -
                               np.fliplr(right_gray)).sum()/(pixels/1.*2)
data_loader.py 文件源码 项目:keras_zoo 作者: david-vazquez 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def load_img(path, grayscale=False, resize=None, order=1):
    # Load image
    img = io.imread(path)

    # Resize
    # print('Desired resize: ' + str(resize))
    if resize is not None:
        img = skimage.transform.resize(img, resize, order=order,
                                       preserve_range=True)
        # print('Final resize: ' + str(img.shape))

    # Color conversion
    if len(img.shape) == 2 and not grayscale:
        img = gray2rgb(img)
    elif len(img.shape) > 2 and img.shape[2] == 3 and grayscale:
        img = rgb2gray(img)

    # Return image
    return img
extract_hog_features.py 文件源码 项目:CS231A_Project 作者: afazel 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def extract_pos_hog_features(path, num_samples):

    features = []
    cnt = 0
    for dirpath, dirnames, filenames in walk(path):
        for my_file in filenames:
            print path+my_file
            if cnt < num_samples:
                cnt = cnt + 1
                im = cv2.imread(path + my_file)
                print im.shape
                image = color.rgb2gray(im)
                image = image[17:145, 16:80]

                my_feature, _ = hog(image, orientations=9, pixels_per_cell=(8, 8),cells_per_block=(2, 2), visualise=True)
                features.append(my_feature)
    return features
extract_hog_features.py 文件源码 项目:CS231A_Project 作者: afazel 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def extract_neg_hog_features(path, num_samples):

    features = []
    cnt = 0
    for dirpath, dirnames, filenames in walk(path):
        for my_file in filenames:
            if cnt < num_samples:
                cnt = cnt + 1
                im = cv2.imread(path + my_file)
                image = color.rgb2gray(im)
                image = image[17:145, 16:80]
                #cv2.imshow('test',image)
                #cv2.waitKey(0)
                my_feature, _ = hog(image, orientations=9, pixels_per_cell=(8, 8),cells_per_block=(2, 2), visualise=True)
                features.append(my_feature)
    return features
pong_wrapper.py 文件源码 项目:pytorch-nec 作者: mjacar 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_screen(self):
    screen = self.env.render(mode='rgb_array')
    screen = color.rgb2gray(screen)
    screen = imresize(screen, (110, 84))
    screen = screen[18:102][:] / 255.0
    return screen.astype(np.float)
segment.py 文件源码 项目:iFruitFly 作者: AdnanMuhib 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def scaler(_imageFile):
    _scaled = color.rgb2gray(_imageFile);
    return _scaled;
imageSegmentor_v3.py 文件源码 项目:iFruitFly 作者: AdnanMuhib 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def scaler(_imageFile):
    _scaled = color.rgb2gray(_imageFile);     
    return _scaled;
megafacade.py 文件源码 项目:facade-segmentation 作者: jfemiani 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _load_image_mask(self):
        # Sometimes an approximate mask can be produced based on Google range data
        # the mask indicates which parts of the image are not facade
        mask_path = os.path.join(os.path.dirname(self.path), 'mask.png')
        if self.use_mask and os.path.isfile(mask_path):
            self.data_mask = rgb2gray(imread(mask_path)) > 0.5
        else:
            self.data_mask = None
atari_1step_qlearning.py 文件源码 项目:tflearn 作者: tflearn 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def get_preprocessed_frame(self, observation):
        """
        0) Atari frames: 210 x 160
        1) Get image grayscale
        2) Rescale image 110 x 84
        3) Crop center 84 x 84 (you can crop top/bottom according to the game)
        """
        return resize(rgb2gray(observation), (110, 84))[13:110 - 13, :]
2-play.py 文件源码 项目:Deep-Learning-with-Theano 作者: PacktPublishing 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def save_observation(observation):
    global observations
    observations = np.roll(observations, -input_depth, axis=0)
    observations[-input_depth:, ...] = rgb2gray(imresize(observation, screen))[None, ...]
dqn_feature.py 文件源码 项目:DeepLearning 作者: Wanwannodao 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _preprocess_observation(self, obs):
        # clop center
        return np.asarray(resize(rgb2gray(obs), (110, 84))[-84:, :]*255, dtype=np.uint8)

# Hyperparameters
# env_name = 'CartPole-v0'  # env to play
dqn.py 文件源码 项目:DeepLearning 作者: Wanwannodao 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _preprocess_observation(self, obs):
        # clop center
        return np.asarray(resize(rgb2gray(obs), (110, 84))[-84:, :]*255, dtype=np.uint8)

# Hyperparameters
# env_name = 'CartPole-v0'  # env to play


问题


面经


文章

微信
公众号

扫码关注公众号