python类xkcd_rgb()的实例源码

plotter.py 文件源码 项目:PorousMediaLab 作者: biogeochemistry 项目源码 文件源码 阅读 57 收藏 0 点赞 0 评论 0
def plot_profile(lab, element):
    plt.figure()
    plt.plot(lab.profiles[element], -lab.x,
             sns.xkcd_rgb["denim blue"], lw=3, label=element)
    if element == 'Temperature':
        plt.title('Temperature profile')
        plt.xlabel('Temperature, C')
    elif element == 'pH':
        plt.title('pH profile')
        plt.xlabel('pH')
    else:
        plt.title('%s concentration' % (element, ))
        plt.xlabel('Concentration')
    plt.ylabel('Depth')
    ax = plt.gca()
    ax.ticklabel_format(useOffset=False)
    ax.grid(linestyle='-', linewidth=0.2)
    plt.legend()
    plt.tight_layout()
    return ax
experiment.py 文件源码 项目:double-dqn 作者: musyoku 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_evaluation_episode_reward():
    pylab.clf()
    sns.set_context("poster")
    pylab.plot(0, 0)
    episodes = [0]
    average_scores = [0]
    median_scores = [0]
    for n in xrange(len(csv_evaluation)):
        params = csv_evaluation[n]
        episodes.append(params[0])
        average_scores.append(params[1])
        median_scores.append(params[2])
    pylab.plot(episodes, average_scores, sns.xkcd_rgb["windows blue"], lw=2)
    pylab.xlabel("episodes")
    pylab.ylabel("average score")
    pylab.savefig("%s/evaluation_episode_average_reward.png" % args.plot_dir)

    pylab.clf()
    pylab.plot(0, 0)
    pylab.plot(episodes, median_scores, sns.xkcd_rgb["windows blue"], lw=2)
    pylab.xlabel("episodes")
    pylab.ylabel("median score")
    pylab.savefig("%s/evaluation_episode_median_reward.png" % args.plot_dir)
experiment.py 文件源码 项目:dueling-network 作者: musyoku 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_evaluation_episode_reward():
    pylab.clf()
    sns.set_context("poster")
    pylab.plot(0, 0)
    episodes = [0]
    average_scores = [0]
    median_scores = [0]
    for n in xrange(len(csv_evaluation)):
        params = csv_evaluation[n]
        episodes.append(params[0])
        average_scores.append(params[1])
        median_scores.append(params[2])
    pylab.plot(episodes, average_scores, sns.xkcd_rgb["windows blue"], lw=2)
    pylab.xlabel("episodes")
    pylab.ylabel("average score")
    pylab.savefig("%s/evaluation_episode_average_reward.png" % args.plot_dir)

    pylab.clf()
    pylab.plot(0, 0)
    pylab.plot(episodes, median_scores, sns.xkcd_rgb["windows blue"], lw=2)
    pylab.xlabel("episodes")
    pylab.ylabel("median score")
    pylab.savefig("%s/evaluation_episode_median_reward.png" % args.plot_dir)
experiment.py 文件源码 项目:double-dqn 作者: musyoku 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_episode_reward():
    pylab.clf()
    sns.set_context("poster")
    pylab.plot(0, 0)
    episodes = [0]
    scores = [0]
    for n in xrange(len(csv_episode)):
        params = csv_episode[n]
        episodes.append(params[0])
        scores.append(params[1])
    pylab.plot(episodes, scores, sns.xkcd_rgb["windows blue"], lw=2)
    pylab.xlabel("episodes")
    pylab.ylabel("score")
    pylab.savefig("%s/episode_reward.png" % args.plot_dir)
experiment.py 文件源码 项目:double-dqn 作者: musyoku 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot_training_episode_highscore():
    pylab.clf()
    sns.set_context("poster")
    pylab.plot(0, 0)
    episodes = [0]
    highscore = [0]
    for n in xrange(len(csv_training_highscore)):
        params = csv_training_highscore[n]
        episodes.append(params[0])
        highscore.append(params[1])
    pylab.plot(episodes, highscore, sns.xkcd_rgb["windows blue"], lw=2)
    pylab.xlabel("episodes")
    pylab.ylabel("highscore")
    pylab.savefig("%s/training_episode_highscore.png" % args.plot_dir)
crbl.py 文件源码 项目:shmlast 作者: camillescott 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_crbh_fit(model_df, hits_df, model_plot_fn, show=False,
                  figsize=(10,10), feature_col='E', length_col='s_aln_len',
                  **fig_kwds):

    plt.style.use('seaborn-ticks')

    with FigureManager(model_plot_fn, show=show, 
                       figsize=figsize, **fig_kwds) as (fig, ax):

        sample_size = min(len(hits_df), 5000)
        hits_df, scaled_col = scale_evalues(hits_df, name=feature_col,
                                            inplace=False)

        ax.scatter(hits_df[length_col], hits_df[scaled_col], s=10, alpha=0.7, 
                   c=sns.xkcd_rgb['ruby'], marker='o', label='Query Hits')

        ax.scatter(model_df['center'], model_df['fit'], label='CRBL Fit',
                   c=sns.xkcd_rgb['twilight blue'], marker='o', s=5, alpha=0.7)

        leg = ax.legend(fontsize='medium', scatterpoints=3, frameon=True)
        leg.get_frame().set_linewidth(1.0)

        ax.set_xlim(model_df['center'].min(), model_df['center'].max())
        ax.set_ylim(0, max(model_df['fit'].max(), hits_df[scaled_col].max()) + 50)
        ax.set_ylabel('Score ($E_{scaled}$)' if scaled_col == 'E_scaled'\
                      else 'Score ({0})'.format(scaled_col))
        ax.set_xlabel('Alignment Length')
experiment.py 文件源码 项目:dueling-network 作者: musyoku 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def plot_episode_reward():
    pylab.clf()
    sns.set_context("poster")
    pylab.plot(0, 0)
    episodes = [0]
    scores = [0]
    for n in xrange(len(csv_episode)):
        params = csv_episode[n]
        episodes.append(params[0])
        scores.append(params[1])
    pylab.plot(episodes, scores, sns.xkcd_rgb["windows blue"], lw=2)
    pylab.xlabel("episodes")
    pylab.ylabel("score")
    pylab.savefig("%s/episode_reward.png" % args.plot_dir)
experiment.py 文件源码 项目:dueling-network 作者: musyoku 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_training_episode_highscore():
    pylab.clf()
    sns.set_context("poster")
    pylab.plot(0, 0)
    episodes = [0]
    highscore = [0]
    for n in xrange(len(csv_training_highscore)):
        params = csv_training_highscore[n]
        episodes.append(params[0])
        highscore.append(params[1])
    pylab.plot(episodes, highscore, sns.xkcd_rgb["windows blue"], lw=2)
    pylab.xlabel("episodes")
    pylab.ylabel("highscore")
    pylab.savefig("%s/training_episode_highscore.png" % args.plot_dir)


问题


面经


文章

微信
公众号

扫码关注公众号