def testData():
num_puntos =2000
conjunto_puntos =[]
for i in range(num_puntos):
if np.random.random()>0.5:
x,y =np.random.normal(0.0,0.9),np.random.normal(0.0,0.9)
conjunto_puntos.append([x,y])
else:
x, y = np.random.normal(3.0, 0.5), np.random.normal(1.0, 0.5)
conjunto_puntos.append([x, y])
df =pd.DataFrame({'x':[v[0] for v in conjunto_puntos],'y':
[v[1] for v in conjunto_puntos]})
sns.lmplot('x','y',data=df,fit_reg=False,size=6)
plt.show()
############??????###############
python类lmplot()的实例源码
def visualize_data(self):
"""
Transform the DataFrame to the 2-dimensional case and visualizes the data. The first tags are used as labels.
:return:
"""
logging.debug("Preparing visualization of DataFrame")
# Reduce dimensionality to 2 features for visualization purposes
X_visualization = self.reduce_dimensionality(self, self.X, n_features=2)
df = self.prepare_dataframe(X_visualization)
# Set X and Y coordinate for each articles
df['X coordinate'] = df['coordinates'].apply(lambda x: x[0])# shwenag ...No clue whats happening??
df['Y coordinate'] = df['coordinates'].apply(lambda x: x[1])# shwenag ...No clue whats happening??
'''
# Create a list of markers, each tag has its own marker
n_tags_first = len(self.df['tags_first'].unique())
markers_choice_list = ['o', 's', '^', '.', 'v', '<', '>', 'D']
markers_list = [markers_choice_list[i % 8] for i in range(n_tags_first)]
'''
# Create scatter plot
sns.lmplot("X coordinate",
"Y coordinate",
#hue="tags_first",#commented by shwenag
data=df,
fit_reg=False,
#markers=markers_list,#commented by shwenag
scatter_kws={"s": 150})
# Adjust borders and add title
sns.set(font_scale=2)
sns.plt.title('Visualization of articles in a 2-dimensional space')
sns.plt.subplots_adjust(right=0.80, top=0.90, left=0.12, bottom=0.12)
# Show plot
sns.plt.show()
def visualize_data(self):
"""
Transform the DataFrame to the 2-dimensional case and visualizes the data. The first tags are used as labels.
:return:
"""
logging.debug("Preparing visualization of DataFrame")
# Reduce dimensionality to 2 features for visualization purposes
X_visualization = self.reduce_dimensionality(self, self.X, n_features=2)
df = self.prepare_dataframe(X_visualization)
# Set X and Y coordinate for each articles
df['X coordinate'] = df['coordinates'].apply(lambda x: x[0])# shwenag ...No clue whats happening??
df['Y coordinate'] = df['coordinates'].apply(lambda x: x[1])# shwenag ...No clue whats happening??
'''
# Create a list of markers, each tag has its own marker
n_tags_first = len(self.df['tags_first'].unique())
markers_choice_list = ['o', 's', '^', '.', 'v', '<', '>', 'D']
markers_list = [markers_choice_list[i % 8] for i in range(n_tags_first)]
'''
# Create scatter plot
sns.lmplot("X coordinate",
"Y coordinate",
#hue="tags_first",#commented by shwenag
data=df,
fit_reg=False,
#markers=markers_list,#commented by shwenag
scatter_kws={"s": 150})
# Adjust borders and add title
sns.set(font_scale=2)
sns.plt.title('Visualization of articles in a 2-dimensional space')
sns.plt.subplots_adjust(right=0.80, top=0.90, left=0.12, bottom=0.12)
# Show plot
sns.plt.show()
def plotScatterLabelled(data, x_param, y_param, huey, output_path, output_directory, output_filename):
sns.lmplot(x_param, y_param, data, hue=huey, fit_reg=False);
output_ = "%s/%s/%s" % (output_path, output_directory, output_filename)
try:
plt.savefig(output_)
except IOError:
os.makedirs('%s/%s/' % (output_path, output_directory))
plt.savefig(output_)
plt.close()
def plot_clustering(clustering, data, title):
plot_df = pd.DataFrame(data, columns=['0', '1'])
plot_df['cluster'] = clustering
g = sb.lmplot(x='0', y='1', data=plot_df, hue='cluster', fit_reg=False)
g.ax.set_title(title)
pp.draw()
def visualize_data(self):
"""
Transform the DataFrame to the 2-dimensional case and visualizes the data. The first tags are used as labels.
:return:
"""
logging.debug("Preparing visualization of DataFrame")
# Reduce dimensionality to 2 features for visualization purposes
X_visualization = self.reduce_dimensionality(self.X, n_features=2)
df = self.prepare_dataframe(X_visualization)
# Set X and Y coordinate for each articles
df['X coordinate'] = df['coordinates'].apply(lambda x: x[0])
df['Y coordinate'] = df['coordinates'].apply(lambda x: x[1])
# Create a list of markers, each tag has its own marker
n_tags_first = len(self.df['tags_first'].unique())
markers_choice_list = ['o', 's', '^', '.', 'v', '<', '>', 'D']
markers_list = [markers_choice_list[i % 8] for i in range(n_tags_first)]
# Create scatter plot
sns.lmplot("X coordinate",
"Y coordinate",
hue="tags_first",
data=df,
fit_reg=False,
markers=markers_list,
scatter_kws={"s": 150})
# Adjust borders and add title
sns.set(font_scale=2)
sns.plt.title('Visualization of TMT articles in a 2-dimensional space')
sns.plt.subplots_adjust(right=0.80, top=0.90, left=0.12, bottom=0.12)
# Show plot
sns.plt.show()
# Train recommender