python类set_palette()的实例源码

callbacks.py 文件源码 项目:keras-utilities 作者: cbaziotis 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def on_train_begin(self, logs={}):
        sns.set_style("whitegrid")
        sns.set_style("whitegrid", {"grid.linewidth": 0.5,
                                    "lines.linewidth": 0.5,
                                    "axes.linewidth": 0.5})
        flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e",
                  "#2ecc71"]
        sns.set_palette(sns.color_palette(flatui))
        # flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"]
        # sns.set_palette(sns.color_palette("Set2", 10))

        plt.ion()  # set plot to animated
        self.fig = plt.figure(
            figsize=(self.width * (1 + len(self.get_metrics(logs))),
                     self.height))  # width, height in inches

        # move it to the upper left corner
        move_figure(self.fig, 25, 25)
analytics.py 文件源码 项目:openai_lab 作者: kengz 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def scoped_mpl_import():
    import matplotlib
    matplotlib.rcParams['backend'] = MPL_BACKEND

    import matplotlib.pyplot as plt
    plt.rcParams['toolbar'] = 'None'  # mute matplotlib toolbar

    import seaborn as sns
    sns.set(style="whitegrid", color_codes=True, font_scale=1.0,
            rc={'lines.linewidth': 1.0,
                'backend': matplotlib.rcParams['backend']})
    palette = sns.color_palette("Blues_d")
    palette.reverse()
    sns.set_palette(palette)

    return (matplotlib, plt, sns)
styling.py 文件源码 项目:cohorts 作者: hammerlab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def set_styling():
    sb.set_style("white")
    red = colors.hex2color("#bb3f3f")
    blue = colors.hex2color("#5a86ad")
    deep_colors = sb.color_palette("deep")
    green = deep_colors[1]
    custom_palette = [red, blue, green]
    custom_palette.extend(deep_colors[3:])
    sb.set_palette(custom_palette)
    mpl.rcParams.update({"figure.figsize": np.array([6, 6]),
                         "legend.fontsize": 12,
                         "font.size": 16,
                         "axes.labelsize": 16,
                         "axes.labelweight": "bold",
                         "xtick.labelsize": 16,
                         "ytick.labelsize": 16})
figs.py 文件源码 项目:extract 作者: dblalock 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def makeDishwasherFig(ax=None, zNorm=True, save=True):
    # ts = getGoodDishwasherTs()
    # ts.data = ar.zNormalizeCols(ts.data)
    ts = getFig1Ts(zNorm=True, whichTs=WHICH_DISHWASHER_TS)
    # ax = ts.plot(useWhichLabels=['ZC'], showLabels=False, capYLim=900)
    colors = DISHWASHER_COLOR_PALETTE * 3 # cycles thru almost three times
    colors[DISHWASHER_DIM_TO_HIGHLIGHT] = DISHWASHER_HIGHLIGHT_COLOR
    colors = colors[:ts.data.shape[1]]

    ts.data[:, 2] /= 2 # scale the ugliest dim to make pic prettier
    ax = ts.plot(showLabels=False, showBounds=False, capYLim=900, ax=ax,
        colors=colors) # resets palette...
    # ax = ts.plot(showLabels=False, showBounds=False, capYLim=900, ax=None) # works

    # ax.plot(ts.data[:, DISHWASHER_DIM_TO_HIGHLIGHT], color=DISHWASHER_HIGHLIGHT_COLOR)
    # sb.set_palette(DEFAULT_SB_PALETTE)

    sb.despine(left=True)
    ax.set_title("Dishwasher", y=TITLE_Y_POS)
    # ax.set_xlabel("Minute")
    plt.tight_layout()
    if save:
        saveFigWithName('dishwasher')

# ------------------------------------------------ MSRC
stats.py 文件源码 项目:temci 作者: parttimenerd 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def reset_plt(self):
        """ Reset the current matplotlib plot style. """
        import matplotlib.pyplot as plt
        plt.gcf().subplots_adjust(bottom=0.15)
        if Settings()["report/xkcd_like_plots"]:
            import seaborn as sns
            sns.reset_defaults()
            mpl.use("agg")
            plt.xkcd()
        else:
            import seaborn as sns
            sns.reset_defaults()
            sns.set_style("darkgrid")
            sns.set_palette(sns.color_palette("muted"))
            mpl.use("agg")
chart.py 文件源码 项目:pygcam 作者: JGCRI 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def setupPalette(count, pal=None):
    # See http://xkcd.com/color/rgb/. These were chosen to be different "enough".
    colors = ['grass green', 'canary yellow', 'dirty pink', 'azure', 'tangerine', 'strawberry',
              'yellowish green', 'gold', 'sea blue', 'lavender', 'orange brown', 'turquoise',
              'royal blue', 'cranberry', 'pea green', 'vermillion', 'sandy yellow', 'greyish brown',
              'magenta', 'silver', 'ivory', 'carolina blue', 'very light brown']

    palette = sns.color_palette(palette=pal, n_colors=count) if pal else sns.xkcd_palette(colors)
    sns.set_palette(palette, n_colors=count)


# For publications, call setupPlot("paper", font_scale=1.5)
plotting.py 文件源码 项目:taut-sensoranalysis-python 作者: pjhartin 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_example(missed, acknowledged):
    sensor_miss = import_sensorfile(missed)
    sensor_ack = import_sensorfile(acknowledged)

    # Window data
    mag_miss = window_data(process_input(sensor_miss))
    mag_ack = window_data(process_input(sensor_ack))

    # Window data
    mag_miss = window_data(process_input(sensor_miss))
    mag_ack = window_data(process_input(sensor_ack))

    # Filter setup
    kernel = 15

    # apply filter
    mag_miss_filter = sci.medfilt(mag_miss, kernel)
    mag_ack_filter = sci.medfilt(mag_ack, kernel)

    # calibrate data
    mag_miss_cal = mf.calibrate_median(mag_miss)
    mag_miss_cal_filter = mf.calibrate_median(mag_miss_filter)

    mag_ack_cal = mf.calibrate_median(mag_ack)
    mag_ack_cal_filter = mf.calibrate_median(mag_ack_filter)

    # PLOT
    sns.set_style("white")
    current_palette = sns.color_palette('muted')
    sns.set_palette(current_palette)

    plt.figure(0)

    # Plot RAW missed and acknowledged reminders
    ax1 = plt.subplot2grid((2, 1), (0, 0))
    plt.ylim([-1.5, 1.5])
    plt.ylabel('Acceleration (g)')
    plt.plot(mag_miss_cal, label='Recording 1')
    plt.legend(loc='lower left')

    ax2 = plt.subplot2grid((2, 1), (1, 0))
    # Plot Missed Reminder RAW
    plt.ylim([-1.5, 1.5])
    plt.ylabel('Acceleration (g)')
    plt.xlabel('t (ms)')
    plt.plot(mag_ack_cal, linestyle='-', label='Recording 2')
    plt.legend(loc='lower left')

    # CALC AND SAVE STATS
    stats_one = sp.calc_stats_for_data_stream_as_dictionary(mag_miss_cal)
    stats_two = sp.calc_stats_for_data_stream_as_dictionary(mag_ack_cal)

    data = [stats_one, stats_two]
    write_to_csv(data, 'example_waves')

    plt.show()
test_completely_positive.py 文件源码 项目:sdp_kmeans 作者: simonsfoundation 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_reconstruction(X, gt, n_clusters, filename, from_file=False):
    Ds = sdp_kmeans(X, n_clusters, method='cvx')

    if from_file:
        data = scipy.io.loadmat('{}{}.mat'.format(dir_name, filename))
        rec_errors = data['rec_errors']
        k_values = data['k_values']
    else:
        k_values = np.arange(200 + len(X)) + 1
        rec_errors = []
        for k in k_values:
            print('{} / {}'.format(k, k_values[-1]))
            rec_errors_k = []
            for trials in range(50):
                Y = symnmf_admm(Ds[-1], k=k)
                rec_errors_k.append(check_completely_positivity(Ds[-1], Y))
            rec_errors.append(rec_errors_k)
        rec_errors = np.array(rec_errors)
        scipy.io.savemat('{}{}.mat'.format(dir_name, filename),
                         dict(rec_errors=rec_errors,
                              k_values=k_values))

    sns.set_style('white')

    plt.figure(tight_layout=True)
    gs = gridspec.GridSpec(1, 3)

    ax = plt.subplot(gs[0])
    plot_data_clustered(X, gt, ax=ax)

    for i, D_input in enumerate(Ds):
        ax = plt.subplot(gs[i + 1])
        plot_matrix(D_input, ax=ax)
        if i == 0:
            ax.set_title('Original Gramian')
        else:
            ax.set_title('Layer {} (k={})'.format(i, n_clusters))
    plt.savefig('{}{}_solution.pdf'.format(dir_name, filename))

    plt.figure(tight_layout=True)
    mean = np.mean(rec_errors, axis=1)
    std = np.std(rec_errors, axis=1)
    sns.set_palette('muted')
    plt.fill_between(np.squeeze(k_values), mean - 2 * std, mean + 2 * std,
                     alpha=0.3)
    plt.semilogy(np.squeeze(k_values), mean, linewidth=2)
    plt.semilogy([n_clusters, n_clusters], [mean.min(), mean.max()],
                 linestyle='--', linewidth=2)
    plt.xlabel('$r$', size='xx-large')
    plt.ylabel('Relative reconstruction error', size='xx-large')
    plt.ylim(np.floor(rec_errors.min() * 1e3) / 1e3, 1)
    plt.savefig('{}{}_curve.pdf'.format(dir_name, filename))
utils.py 文件源码 项目:saw_release 作者: kovibalu 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_2D_arrays(arrs, title='', xlabel='', xinterval=None, ylabel='', yinterval=None, line_names=[], simplified=False):
    """ Plots multiple arrays in the same plot based on the specifications. """
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import seaborn as sns

    plt.clf()
    sns.set_style('darkgrid')
    sns.set(font_scale=1.5)
    sns.set_palette('husl', 8)

    for i, arr in enumerate(arrs):
        if arr.ndim != 2 or arr.shape[1] != 2:
            raise ValueError(
                'The array should be 2D and the second dimension should be 2!'
                ' Shape: %s' % str(arr.shape)
            )

        # Plot last one with black
        if i == len(arrs) - 1:
            plt.plot(arr[:, 0], arr[:, 1], color='black')
        else:
            plt.plot(arr[:, 0], arr[:, 1])

    # If simplified, we don't show text anywhere
    if not simplified:
        plt.title(title[:30])
        plt.xlabel(xlabel)
        plt.ylabel(ylabel)
        if line_names:
            plt.legend(line_names, loc=6, bbox_to_anchor=(1, 0.5))

    if xinterval:
        plt.xlim(xinterval)
    if yinterval:
        plt.ylim(yinterval)

    plt.tight_layout()


###############
# String handling
###############


问题


面经


文章

微信
公众号

扫码关注公众号