def plot_hist(baseline_samples, target_samples, true_x, true_y):
baseline_samples = baseline_samples.squeeze()
target_samples = target_samples.squeeze()
bmin, bmax = baseline_samples.min(), baseline_samples.max()
ax = sns.kdeplot(baseline_samples, shade=True, color=(0.6, 0.1, 0.1, 0.2))
ax = sns.kdeplot(target_samples, shade=True, color=(0.1, 0.1, 0.6, 0.2))
ax.set_xlim(bmin, bmax)
y0, y1 = ax.get_ylim()
plt.plot([true_y, true_y], [0, y1 - (y1 - y0) * 0.01], linewidth=1, color='r')
plt.title('Predictive' + (f' at {true_x:.2f}' if true_x is not None else ''))
fig = plt.gcf()
fig.set_size_inches(9, 9)
# plt.tight_layout() # pad=0.4, w_pad=0.5, h_pad=1.0)
name = utils.DATA_DIR.replace('/', '-')
# plt.tight_layout(pad=0.6)
utils.save_fig('predictive-at-point-' + name)
python类kdeplot()的实例源码
def __init__(self, parent):
fig = Figure(figsize=(4, 4), dpi=100, tight_layout=True)
super(DefaultGraph, self).__init__(fig)
self.setParent(parent)
sns.set(style="dark")
for index, s in zip(range(9), np.linspace(0, 3, 10)):
axes = fig.add_subplot(3, 3, index + 1)
x, y = np.random.randn(2, 50)
cmap = sns.cubehelix_palette(start=s, light=1, as_cmap=True)
sns.kdeplot(x, y, cmap=cmap, shade=True, cut=5, ax=axes)
axes.set_xlim(-3, 3)
axes.set_ylim(-3, 3)
axes.set_xticks([])
axes.set_yticks([])
fig.suptitle("Activity Browser", y=0.5, fontsize=30, backgroundcolor=(1, 1, 1, 0.5))
self.setSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding)
self.updateGeometry()
def joint_plot(x, y, xlabel=None,
ylabel=None, xlim=None, ylim=None,
loc="best", color='#0485d1',
size=8, markersize=50, kind="kde",
scatter_color="r"):
with sns.axes_style("darkgrid"):
if xlabel and ylabel:
g = SubsampleJointGrid(xlabel, ylabel,
data=DataFrame(data={xlabel: x, ylabel: y}),
space=0.1, ratio=2, size=size, xlim=xlim, ylim=ylim)
else:
g = SubsampleJointGrid(x, y, size=size,
space=0.1, ratio=2, xlim=xlim, ylim=ylim)
g.plot_joint(sns.kdeplot, shade=True, cmap="Blues")
g.plot_sub_joint(plt.scatter, 1000, s=20, c=scatter_color, alpha=0.3)
g.plot_marginals(sns.distplot, kde=False, rug=False)
g.annotate(ss.pearsonr, fontsize=25, template="{stat} = {val:.2g}\np = {p:.2g}")
g.ax_joint.set_yticklabels(g.ax_joint.get_yticks())
g.ax_joint.set_xticklabels(g.ax_joint.get_xticks())
return g
def plot_kde(data, dir=None, filename="kde", color="Greens"):
if dir is None:
raise Exception()
try:
os.mkdir(dir)
except:
pass
fig = pylab.gcf()
fig.set_size_inches(16.0, 16.0)
pylab.clf()
bg_color = sns.color_palette(color, n_colors=256)[0]
ax = sns.kdeplot(data[:, 0], data[:,1], shade=True, cmap=color, n_levels=30, clip=[[-4, 4]]*2)
ax.set_axis_bgcolor(bg_color)
kde = ax.get_figure()
pylab.xlim(-4, 4)
pylab.ylim(-4, 4)
kde.savefig("{}/{}.png".format(dir, filename))
def plot_kde(data, dir=None, filename="kde", color="Greens"):
if dir is None:
raise Exception()
try:
os.mkdir(dir)
except:
pass
fig = pylab.gcf()
fig.set_size_inches(16.0, 16.0)
pylab.clf()
bg_color = sns.color_palette(color, n_colors=256)[0]
ax = sns.kdeplot(data[:, 0], data[:,1], shade=True, cmap=color, n_levels=30, clip=[[-4, 4]]*2)
ax.set_axis_bgcolor(bg_color)
kde = ax.get_figure()
pylab.xlim(-4, 4)
pylab.ylim(-4, 4)
kde.savefig("{}/{}".format(dir, filename))
def Features_Cumulative_Frequency(X, y):
X = pd.DataFrame(X)
y = pd.DataFrame(y)
df = pd.concat((y,X), axis=1)
columns = ['y']
for i in range(1,df.shape[1]):
columns.append('x' + str(i))
df.columns = columns
for i in range(1,df.shape[1]):
x = 'x' + str(i)
sns.kdeplot(df[df.y==0][x], cumulative=True, label="y=0")
sns.kdeplot(df[df.y==1][x], cumulative=True, label="y=1")
plt.xlabel(x + ' features')
plt.ylabel('Cumulative frequency')
plt.show()
def plot_decision_function(score_df, partition, output_file):
"""
Plots the decision function for a given partition (either 'train' or
'test') and saves a figure to file.
Arguments:
:param score_df: a specific folds decision scores and status
:param partition: either 'train' or 'test' will plot performance
:param output_file: file to output the figure
"""
ax = sns.kdeplot(score_df.ix[(score_df.status == 1) &
(score_df.partition == partition), :]
.decision, color='red', label='Deficient',
shade=True)
ax = sns.kdeplot(score_df.ix[(score_df.status == 0) &
(score_df.partition == partition), :]
.decision, color='blue', label='Wild-Type',
shade=True)
ax.set(xlabel='Decision Function', ylabel='Density')
ax.set_title('Classifier Decision Function')
sns.despine()
plt.tight_layout()
plt.savefig(output_file)
plt.close()
def plotCorrelation(stats):
#columnsToDrop = ['sleep_interval_max_len', 'sleep_interval_min_len',
# 'sleep_interval_avg_len', 'sleep_inefficiency',
# 'sleep_hours', 'total_hours']
#stats = stats.drop(columnsToDrop, axis=1)
g = sns.PairGrid(stats)
def corrfunc(x, y, **kws):
r, p = scipystats.pearsonr(x, y)
ax = plt.gca()
ax.annotate("r = {:.2f}".format(r),xy=(.1, .9), xycoords=ax.transAxes)
ax.annotate("p = {:.2f}".format(p),xy=(.2, .8), xycoords=ax.transAxes)
if p>0.04:
ax.patch.set_alpha(0.1)
g.map_upper(plt.scatter)
g.map_diag(plt.hist)
g.map_lower(sns.kdeplot, cmap="Blues_d")
g.map_upper(corrfunc)
sns.plt.show()
def plot_kde(data, dir=None, filename="kde", color="Greens"):
if dir is None:
raise Exception()
try:
os.mkdir(dir)
except:
pass
fig = pylab.gcf()
fig.set_size_inches(16.0, 16.0)
pylab.clf()
bg_color = sns.color_palette(color, n_colors=256)[0]
ax = sns.kdeplot(data[:, 0], data[:,1], shade=True, cmap=color, n_levels=30, clip=[[-4, 4]]*2)
ax.set_axis_bgcolor(bg_color)
kde = ax.get_figure()
pylab.xlim(-4, 4)
pylab.ylim(-4, 4)
kde.savefig("{}/{}.png".format(dir, filename))
def plot_kde(data, dir=None, filename="kde", color="Greens"):
if dir is None:
raise Exception()
try:
os.mkdir(dir)
except:
pass
fig = pylab.gcf()
fig.set_size_inches(16.0, 16.0)
pylab.clf()
bg_color = sns.color_palette(color, n_colors=256)[0]
ax = sns.kdeplot(data[:, 0], data[:,1], shade=True, cmap=color, n_levels=30, clip=[[-4, 4]]*2)
ax.set_axis_bgcolor(bg_color)
kde = ax.get_figure()
pylab.xlim(-4, 4)
pylab.ylim(-4, 4)
kde.savefig("{}/{}".format(dir, filename))
def histogramnd(ax, data, **kwargs):
"""n-dimensional histogram seaborn based
"""
scatter_data_raw = data
scatter_data_cols = ["x_%d" % (i,) for i in range(data.shape[1])]
# prepare dataframe
df = pd.DataFrame(scatter_data_raw, columns=scatter_data_cols)
g = sns.PairGrid(df)
# g.map_diag(plt.hist)
g.map_diag(sns.kdeplot)
g.map_offdiag(plt.hexbin, cmap="gray", gridsize=30, bins="log");
# logger.log(loglevel_debug, "dir(g)", dir(g))
# print g.diag_axes
# print g.axes
# for i in range(data.shape[1]):
# for j in range(data.shape[1]): # 1, 2; 0, 2; 0, 1
# if i == j:
# continue
# # column gives x axis, row gives y axis, thus need to reverse the selection for plotting goal
# # g.axes[i,j].plot(df["%s%d" % (self.cols_goal_base, j)], df["%s%d" % (self.cols_goal_base, i)], "ro", alpha=0.5)
# g.axes[i,j].plot(df["x_%d" % (j,)], df["x_%d" % (i,)], "ro", alpha=0.5)
plt.show()
# run sns scattermatrix on dataframe
# plot_scattermatrix(df, ax = None)
def word_count_by_label(articles: pd.DataFrame):
"""Show graph of word counts by article label."""
palette = sns.color_palette(palette='hls', n_colors=2)
true_news_wc = articles[articles['labels'] == 0]['word_count']
fake_news_wc = articles[articles['labels'] == 1]['word_count']
sns.kdeplot(true_news_wc, bw=3, color=palette[0], label='True News')
sns.kdeplot(fake_news_wc, bw=3, color=palette[1], label='Fake News')
sns.plt.legend()
sns.plt.show()
def kde(x,y,title='',color='YlGnBu',xscale='linear',yscale='linear'):
sns.set_style('white')
sns.set_context('notebook', font_scale=1, rc={"lines.linewidth": 0.5})
g = sns.kdeplot(x,y,shade=True, cut=2, cmap=color, shade_lowest=False, legend=True, set_title="test")
plt.tick_params(axis='both', which='major', pad=10)
sns.plt.title(title)
g.set(xscale=xscale)
g.set(yscale=yscale)
sns.despine()
def plot_kdes(subjects, axes):
ftemp = "correlation_analysis/{}_{}_ifs.pkz"
for subj, ax in zip(subjects, axes):
sticks = moss.load_pkl(ftemp.format(subj, "sticks")).corrmat
rest = moss.load_pkl(ftemp.format(subj, "rest")).corrmat
triu = np.triu_indices_from(rest, 1)
sns.kdeplot(sticks[triu], color=".15",
label="residual", ax=ax)
sns.kdeplot(rest[triu], color=".45", dashes=[4, 1],
label="resting", ax=ax)
plt.setp(axes,
xlim=(-.25, .8), ylim=(0, 17),
xticks=np.linspace(-.2, .8, 6),
yticks=[])
for ax in axes:
sns.despine(ax=ax, left=True, trim=True)
plt.setp(ax.get_xticklabels(), size=6)
plt.setp(ax.get_yticklabels(), size=6)
axes[0].legend(bbox_to_anchor=(1.2, .8))
for ax in axes[1:]:
ax.legend_ = None
def myplot(x, y):
x, y = np.array(x), np.array(y)
# bins = np.linspace(-10, 10, 100)
x1 = sns.kdeplot(x, shade=True)
x2 = sns.kdeplot(y, shade=True)
x1.set_xlabel('Value')
x2.set_ylabel('Percentage')
# pyplot.hist(x, bins, alpha=0.5, label='x')
# pyplot.hist(y, bins, alpha=0.5, label='y')
pyplot.legend(loc='upper right')
pyplot.title('Cumulative distributions')
pyplot.show()
def create_plot_posterior(params,plabs,cbars='red',nb=50,num=[]):
if ( len(num) < 2 ):
n = range(0,len(params))
else:
n = num
plt.figure(1,figsize=(12,4*(len(n))/2))
gs = gridspec.GridSpec(nrows=(len(n)+1)/2,ncols=2)
j = 0
for i in n:
plt.subplot(gs[j])
vpar, lpar, rpar = find_vals_perc(params[i],1.0)
moda = my_mode(params[i])
#best_val = params[i][minchi2_index]
#plt.axvline(x=best_val,c='yellow')
plt.axvline(x=vpar,c=cbars)
plt.axvline(x=moda,c='y',ls='-.')
plt.axvline(x=vpar-lpar,c=cbars,ls='--')
plt.axvline(x=vpar+rpar,c=cbars,ls='--')
plt.xlabel(plabs[i])
plt.tick_params( axis='y',which='both',direction='in')
plt.tick_params( axis='x',which='both',direction='in')
if ( is_seaborn_plot ):
sns.kdeplot(params[i], shade=True)
else:
plt.hist(params[i],normed=True,bins=nb)
j = j + 1
fname = outdir+'/'+star+'_posterior.pdf'
print 'Creating ', fname
plt.savefig(fname,format='pdf',bbox_inches='tight')
plt.close()
plots.py 文件源码
项目:Comparative-Annotation-Toolkit
作者: ComparativeGenomicsToolkit
项目源码
文件源码
阅读 30
收藏 0
点赞 0
评论 0
def improvement_plot(consensus_data, ordered_genomes, improvement_tgt):
def do_kdeplot(x, y, ax, n_levels=None, bw='scott'):
try:
sns.kdeplot(x, y, ax=ax, cut=0, cmap='Purples_d', shade=True, shade_lowest=False, n_levels=n_levels, bw=bw,
rasterized=True)
except:
logger.warning('Unable to do a KDE fit to AUGUSTUS improvement.')
pass
with improvement_tgt.open('w') as outf, PdfPages(outf) as pdf, sns.axes_style("whitegrid"):
for genome in ordered_genomes:
data = pd.DataFrame(consensus_data[genome]['Evaluation Improvement']['changes'])
unchanged = consensus_data[genome]['Evaluation Improvement']['unchanged']
if len(data) == 0:
continue
data.columns = ['transMap original introns',
'transMap intron annotation support',
'transMap intron RNA support',
'Original introns',
'Intron annotation support',
'Intron RNA support',
'transMap alignment goodness',
'Alignment goodness']
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(ncols=2, nrows=2)
for ax in [ax1, ax2, ax3]: # goodness plots are allowed to auto-set scale
ax.set_xlim(0, 100)
ax.set_ylim(0, 100)
goodness_min = min(data['Alignment goodness'])
ax4.set_xlim(goodness_min, 100)
ax4.set_ylim(goodness_min, 100)
do_kdeplot(data['transMap original introns'], data['Original introns'], ax1, n_levels=25, bw=2)
sns.regplot(x=data['transMap original introns'], y=data['Original introns'], ax=ax1,
color='#A9B36F', scatter_kws={"s": 3, 'alpha': 0.7, 'rasterized': True}, fit_reg=False)
do_kdeplot(data['transMap intron annotation support'], data['Intron annotation support'], ax2,
n_levels=25, bw=2)
sns.regplot(x=data['transMap intron annotation support'], y=data['Intron annotation support'], ax=ax2,
color='#A9B36F', scatter_kws={"s": 3, 'alpha': 0.7, 'rasterized': True}, fit_reg=False)
do_kdeplot(data['transMap intron RNA support'], data['Intron RNA support'], ax3, n_levels=25, bw=2)
sns.regplot(x=data['transMap intron RNA support'], y=data['Intron RNA support'], ax=ax3,
color='#A9B36F', scatter_kws={"s": 3, 'alpha': 0.7, 'rasterized': True}, fit_reg=False)
do_kdeplot(data['transMap alignment goodness'], data['Alignment goodness'], ax4, n_levels=20, bw=1)
sns.regplot(x=data['transMap alignment goodness'], y=data['Alignment goodness'], ax=ax4,
color='#A9B36F', scatter_kws={"s": 3, 'alpha': 0.7, 'rasterized': True}, fit_reg=False)
fig.suptitle('AUGUSTUS metric improvements for {:,} transcripts in {}.\n'
'{:,} transMap transcripts were chosen.'.format(len(data), genome, unchanged))
for ax in [ax1, ax2, ax3, ax4]:
ax.set(adjustable='box-forced', aspect='equal')
fig.subplots_adjust(hspace=0.3)
multipage_close(pdf, tight_layout=False)
def main():
#?????????????????, ?????????
stock_list = {"zsyh":"600036","jsyh":"601939","szzs":"000001","pfyh":"600000","msyh":"600061"}
for stock, code in stock_list.items():
globals()[stock] = tsh.get_hist_data(code,start="2015-01-01",end="2016-04-16")
#code:?????start:?????end:????
#print(zsyh) #???????????
make_end_line()
print(zsyh.head())
make_end_line()
print(zsyh.columns)
make_end_line()
"""
????
date???
open????
high????
close????
low????
volume????
price_change?????
p_change????
ma5?5???
ma10?10???
ma20: 20???
v_ma5: 5???
v_ma10: 10???
v_ma20: 20???
turnover:???[???????]
"""
print(zsyh.describe())
make_end_line()
print(zsyh.info())
make_end_line()
plt.show(zsyh["close"].plot(figsize=(12,8))) #???????????
#pd.set_option("display.float_format", lambda x: "%10.3f" % x)
plt.show(zsyh["volume"].plot(figsize=(12,8)))
zsyh[["close","ma5","ma10","ma20"]].plot(subplots = True)
plt.show()
plt.show(zsyh[["close","ma5","ma10","ma20"]].plot(figsize=(12,8),linewidth=2))
plt.show(zsyh["p_change"].plot())
plt.show(zsyh["p_change"].plot(figsize=(10,4),legend=True,linestyle="--",marker="o"))
#???????????
plt.show(zsyh["p_change"].hist(bins=20))
plt.show(zsyh["p_change"].plot.kde()) #?????
#?????(kernel density estimation)?????????????????
plt.show(sns.kdeplot(zsyh["p_change"].dropna()))
plt.show(sns.distplot(zsyh["p_change"].dropna())) #??????????????????????