python类despine()的实例源码

barcodeplot.py 文件源码 项目:coquery 作者: gkunter 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def draw(self):
        """ Plot a vertical line for each token in the current data table.
        The line is drawn in a subplot matching the factor level
        combination in that row. The horizontal position corresponds to the
        token id so that tokens that occur in the same part of the corpus
        will also have lines that are placed close to each other. """
        def plot_facet(data, color):
            lineplot(
                x=data["coquery_invisible_corpus_id"],
                y=data[self._groupby[-1]],
                order=self._levels[-1],
                palette=self.options["color_palette_values"],
                data=data)

        #sns.despine(self.g.fig,
                    #left=False, right=False, top=False, bottom=False)

        self.map_data(plot_facet)
        self.g.set_axis_labels(utf8(self.options["label_x_axis"]), utf8(self.options["label_y_axis"]))
        self.g.set(xlim=(0, options.cfg.main_window.Session.Corpus.get_corpus_size(filters=[])))
plotting.py 文件源码 项目:PythonPackages 作者: wanhanwan 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def cross_section_cndl(data, factor_name):
    '''???????????????
    ??????????????

    ??
    ------------------------------
    data:DataFrame(index:[Date,IDs],factor1,factor2,...)

    factor_name:str
    '''
    data = data.reset_index()
    sns.set(style='ticks')

    ax = sns.boxplot(x='Date', y=factor_name, data=data, palette='PRGn')
    sns.despine(offset=10, trim=True)

    return ax

# ??2
# ?????, ?????????????
swarm.py 文件源码 项目:astetik 作者: mikkokotila 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def swarm(data,x,y,xscale='linear',yscale='linear'):

    # set default pretty settings from Seaborn

    sns.set(style="white", palette="muted")
    sns.set_context("notebook", font_scale=1, rc={"lines.linewidth": 0.2}) 

    # createthe plot

    g = sns.swarmplot(x=x, y=y, data=data, palette='RdYlGn')

    plt.tick_params(axis='both', which='major', pad=10)

    g.set(xscale=xscale)
    g.set(yscale=yscale)

    # Setting plot limits

    start = data[y].min().min()
    plt.ylim(start,);

    sns.despine()
histogram.py 文件源码 项目:astetik 作者: mikkokotila 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def histogram(data,variables):

    sns.set_context("notebook", font_scale=1.5, rc={"lines.linewidth": 0})

    sns.set_style('white')

    var_length = len(variables)

    fig, axes = plt.subplots(1, var_length, figsize=(19, 5))

    for i in range(var_length):

        axes[i].hist(data[variables[i]],lw=0,color="indianred",bins=8);
        axes[i].tick_params(axis='both', which='major', pad=15)
        axes[i].set_xlabel(variables[i])
        axes[i].set_yticklabels("");

    sns.despine(left=True)
sup_figure_7.py 文件源码 项目:Waskom_PNAS_2017 作者: WagnerLabPapers 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_time_corrs(subjects, axes):

    x = np.arange(1, 5)
    palette = [".2", ".5"]

    for subj, ax in zip(subjects, axes):

        res_fname = "correlation_analysis/{}_rest_ifs.pkz".format(subj)
        res = moss.load_pkl(res_fname)

        for line, color in zip(res.corr_times.T, palette):
            ax.plot(x, line, "o-", color=color, ms=3, clip_on=False)

        sig = res.corr_times_pctiles > 95
        ax.plot(x[sig], np.ones(sig.sum()) * .0025,
                marker=(6, 2, 0), ls="", mew=.35, mec=".2", ms=3)

        ax.set(xticks=x, xlim=(.6, 4.4), ylim=(0, .07))
        sns.despine(ax=ax, trim=True)

    plt.setp(axes[1:], yticklabels=[])
    axes[0].set_ylabel("Correlation (r)")
chart.py 文件源码 项目:Penny-Dreadful-Tools 作者: PennyDreadfulMTG 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def image(path, costs):
    ys = ['0', '1', '2', '3', '4', '5', '6', '7+', 'X']
    xs = [costs.get(k, 0) for k in ys]
    sns.set_style('white')
    sns.set(font='Concourse C3', font_scale=3)
    g = sns.barplot(ys, xs, palette=['grey'] * len(ys))
    g.axes.yaxis.set_ticklabels([])
    rects = g.patches
    sns.set(font='Concourse C3', font_scale=2)
    for rect, label in zip(rects, xs):
        if label == 0:
            continue
        height = rect.get_height()
        g.text(rect.get_x() + rect.get_width()/2, height + 0.5, label, ha='center', va='bottom')
    g.margins(y=0, x=0)
    sns.despine(left=True, bottom=True)
    g.get_figure().savefig(path, transparent=True, pad_inches=0, bbox_inches='tight')
    plt.clf() # Clear all data from matplotlib so it does not persist across requests.
    return path
nf1_classifier.py 文件源码 项目:nf1_inactivation 作者: greenelab 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot_decision_function(score_df, partition, output_file):
    """
    Plots the decision function for a given partition (either 'train' or
    'test') and saves a figure to file.

    Arguments:
    :param score_df: a specific folds decision scores and status
    :param partition: either 'train' or 'test' will plot performance
    :param output_file: file to output the figure
    """
    ax = sns.kdeplot(score_df.ix[(score_df.status == 1) &
                                 (score_df.partition == partition), :]
                     .decision, color='red', label='Deficient',
                     shade=True)
    ax = sns.kdeplot(score_df.ix[(score_df.status == 0) &
                                 (score_df.partition == partition), :]
                     .decision, color='blue', label='Wild-Type',
                     shade=True)
    ax.set(xlabel='Decision Function', ylabel='Density')
    ax.set_title('Classifier Decision Function')
    sns.despine()
    plt.tight_layout()
    plt.savefig(output_file)
    plt.close()
figs.py 文件源码 项目:extract 作者: dblalock 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def makeDishwasherFig(ax=None, zNorm=True, save=True):
    # ts = getGoodDishwasherTs()
    # ts.data = ar.zNormalizeCols(ts.data)
    ts = getFig1Ts(zNorm=True, whichTs=WHICH_DISHWASHER_TS)
    # ax = ts.plot(useWhichLabels=['ZC'], showLabels=False, capYLim=900)
    colors = DISHWASHER_COLOR_PALETTE * 3 # cycles thru almost three times
    colors[DISHWASHER_DIM_TO_HIGHLIGHT] = DISHWASHER_HIGHLIGHT_COLOR
    colors = colors[:ts.data.shape[1]]

    ts.data[:, 2] /= 2 # scale the ugliest dim to make pic prettier
    ax = ts.plot(showLabels=False, showBounds=False, capYLim=900, ax=ax,
        colors=colors) # resets palette...
    # ax = ts.plot(showLabels=False, showBounds=False, capYLim=900, ax=None) # works

    # ax.plot(ts.data[:, DISHWASHER_DIM_TO_HIGHLIGHT], color=DISHWASHER_HIGHLIGHT_COLOR)
    # sb.set_palette(DEFAULT_SB_PALETTE)

    sb.despine(left=True)
    ax.set_title("Dishwasher", y=TITLE_Y_POS)
    # ax.set_xlabel("Minute")
    plt.tight_layout()
    if save:
        saveFigWithName('dishwasher')

# ------------------------------------------------ MSRC
figs.py 文件源码 项目:extract 作者: dblalock 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def makeGarbageDimTs():
    np.random.seed(123)
    seqLen = 750
    squareLen = seqLen / 17.
    seq = synth.notSoRandomWalk(seqLen, std=.05,
        trendFilterLength=(seqLen // 2), lpfLength=2)

    sb.set_style('white')
    _, ax = plt.subplots()
    # color = sb.color_palette()[1]
    # ax.plot(seq, lw=4, color="#660000") # red I'm using in keynote
    ax.plot(seq, lw=4, color="#CC0000") # red I'm using in keynote
    ax.set_xlim([-squareLen, seqLen + squareLen])
    ax.set_ylim([np.min(seq) * 2, np.max(seq) * 2])

    sb.despine(left=True)
    plt.show()

# def makeMethodsWarpedTs():


# ================================================================ Better Fig1
plots.py 文件源码 项目:Comparative-Annotation-Toolkit 作者: ComparativeGenomicsToolkit 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def _generic_histogram(bars, legend_labels, title_string, pdf, ax, fig, ylabel, names, box_label, bbox_to_anchor):
    fig.legend([x[0] for x in bars[::-1]], legend_labels[::-1], bbox_to_anchor=bbox_to_anchor, frameon=True,
               title=box_label)
    ax.set_title(title_string)
    ax.set_ylabel(ylabel)
    set_ticks(names, ax)
    ax.xaxis.set_ticks(np.arange(0, len(names)) + bar_width / 2.0)
    sns.despine(top=True, right=True)
    multipage_close(pdf)
deprecated_seasonal_flu.py 文件源码 项目:augur 作者: nextstrain 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_sequence_count(flu, fname=None, fs=12):
    # make figure with region counts
    import seaborn as sns
    date_bins = pivots_to_dates(flu.pivots)
    sns.set_style('ticks')
    region_label = {'global': 'Global', 'NA': 'N America', 'AS': 'Asia', 'EU': 'Europe', 'OC': 'Oceania'}
    regions_abbr = ['global', 'NA', 'AS', 'EU', 'OC']
    region_colors = {r:col for r, col in zip(regions_abbr,
                                             sns.color_palette(n_colors=len(regions_abbr)))}
    fig, ax = plt.subplots(figsize=(8, 3))
    count_by_region = flu.mutation_frequency_counts
    drop = 3
    tmpcounts = np.zeros(len(flu.pivots[drop:]))
    plt.bar(date_bins[drop:], count_by_region['global'][drop:], width=18, \
            linewidth=0, label="Other", color="#bbbbbb", clip_on=False)
    for region in region_groups:
        if region!='global':
            plt.bar(date_bins[drop:], count_by_region[region][drop:],
                    bottom=tmpcounts, width=18, linewidth=0,
                    label=region_label[region], color=region_colors[region], clip_on=False)
            tmpcounts += count_by_region[region][drop:]
    make_date_ticks(ax, fs=fs)
    ax.set_ylabel('Sample count')
    ax.legend(loc=3, ncol=1, bbox_to_anchor=(1.02, 0.53))
    plt.subplots_adjust(left=0.1, right=0.82, top=0.94, bottom=0.22)
    sns.despine()
    if fname is not None:
        plt.savefig(fname)
main.py 文件源码 项目:xplore 作者: fahd09 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def explore_feature_variation(self, col=None, use_target=False, **kwargs):
        '''
        Produces univariate plots of a given set of columns. Barplots are used
        for categorical columns while histograms (with fitted density functinos)
        are used for numerical columns.

        If use_target is true, then the variation of the given set of columns
        with respect to the response variable are used (e.g., 2d scatter 
        plots, boxplots, etc).

        Parameters
        ----------
        col : a string of a column name, or a list of many columns names or
                None (default). If col is None, all columns will be used.
        use_target : bool, default False
            Whether to use the target column in the plots.
        **kwargs: additional arguments to be passed to seaborn's distplot or
            to pandas's plotting utilities..
        '''            
        self._validate_params(params_list   = {'col':col},
                              expected_types= {'col':[str,list,type(None)]})        


        if type(col) is str: col = [col]
        if col is None: col = self._get_all_features()
        if use_target == False:
            for column in col:
                if self.is_numeric(self.df[column]) == True:
                    plt.figure(column)
                    #sns.despine(left=True)        
                    sns.distplot(self.df[column], color="m", **kwargs) 
                    plt.title(column)
                    plt.tight_layout()            
                    #plt.figure('boxplot')
                    #sns.boxplot(x=self.df[col], palette="PRGn")
                    #sns.despine(offset=10, trim=True)     
                elif self.is_categorical(self.df[column]) == True:            
                    #print self.df[column].describe()
                    plt.figure(column)
                    #sns.despine(left=True)    
                    if len(self.df[column].unique()) > 30:
                        self.df[column].value_counts()[:20][::-1].plot.barh(**kwargs)
                        #top = pd.DataFrame(data=top)
                        #sns.barplot(y=top.index, x=top)                        
                    else:
                        self.df[column].value_counts()[::-1].plot.barh(**kwargs)
                        #sns.countplot(y=self.df[column])                    
                    plt.title(column)
                    plt.tight_layout()
                else:
                    raise TypeError('TYPE IS NOT SUPPORTED')
        else: # use target variable
            for column in col:
                self.explore_features_covariation(col1=column, col2=self.y, **kwargs)
kde.py 文件源码 项目:astetik 作者: mikkokotila 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def kde(x,y,title='',color='YlGnBu',xscale='linear',yscale='linear'):

    sns.set_style('white')
    sns.set_context('notebook', font_scale=1, rc={"lines.linewidth": 0.5})
    g = sns.kdeplot(x,y,shade=True, cut=2, cmap=color, shade_lowest=False, legend=True, set_title="test")
    plt.tick_params(axis='both', which='major', pad=10)
    sns.plt.title(title)

    g.set(xscale=xscale)
    g.set(yscale=yscale)

    sns.despine()
regression.py 文件源码 项目:astetik 作者: mikkokotila 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def regression(data,x,y,xscale='linear',yscale='linear'):


    sns.set_context("notebook", font_scale=.8, rc={"lines.linewidth": 0})
    sns.set_style('white')

    g = sns.regplot(x=x, y=y, data=data)

    plt.tick_params(axis='both', which='major', pad=10)

    g.set(xscale=xscale)
    g.set(yscale=yscale)

    sns.despine()
figure_3.py 文件源码 项目:Waskom_PNAS_2017 作者: WagnerLabPapers 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot_points(df, axes):

    for exp, ax in zip(["dots", "sticks", "rest"], axes):

        exp_df = pd.melt(df.query("exp == @exp"),
                         "subj", ["within", "between"], "test", "corr")

        sns.pointplot(x="test", y="corr", hue="test", data=exp_df,
                      dodge=.5, join=False, ci=95,
                      palette=[".15", ".5"], ax=ax)
        plt.setp(ax.lines, linewidth=2)

        sns.pointplot(x="test", y="corr", hue="subj", data=exp_df,
                      palette=[".75"], scale=.75, ax=ax)
        plt.setp(ax.collections[:], facecolor="w", zorder=20)

        ax.legend_ = None
        ax.set(ylabel="",
               xlabel="",
               xticks=[-.1, 1.1],
               xticklabels=["Same\ncontext", "Different\ncontext"])

    axes[0].set(ylim=(0, .105), ylabel="Timeseries correlation (r)")
    axes[1].set(ylim=(0, .0525))
    axes[2].set(ylim=(0, .0525))

    for ax in axes:
        sns.despine(ax=ax, trim=True)
sup_figure_3.py 文件源码 项目:Waskom_PNAS_2017 作者: WagnerLabPapers 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def plot_prediction_curves(subjects, axes, exp):

    res_ftemp = "spatial_analysis/{}_{}_ifs.pkz"
    for subj, ax in zip(subjects, axes):

        res = moss.load_pkl(res_ftemp.format(subj, exp))
        x = res.steps

        norm = res.null.mean()
        real = res.real / norm
        pint = res.pint / norm

        ax.plot(x, real, "o-", color=".15",
                ms=2.5, clip_on=False)
        ax.fill_between(x, *pint, color=".4", alpha=.3)

        cross_x, cross_y = res.intersect
        cross_y /= norm

        ax.plot([cross_x, cross_x], [0, cross_y],
                lw=.8, dashes=[3, 1], color=".5", zorder=0)

        ax.set(xlim=(0, 40), ylim=(0, 2),
               xticks=np.linspace(0, 40, 5),
               yticks=[0, 1, 2],
               yticklabels=[0, 1, 2])

        sns.despine(ax=ax)

    ylabel = "Normalized error"
    plt.setp(axes[1:7], yticklabels=[])
    axes[0].set(ylabel=ylabel)

    if exp == "dots":
        plt.setp(axes[8:], yticklabels=[])
        plt.setp(axes[:7], xticklabels=[])
        axes[7].set_ylabel(ylabel)
sup_figure_8.py 文件源码 项目:Waskom_PNAS_2017 作者: WagnerLabPapers 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def plot_distance_corrs(subjects, axes, exp):

    for subj, ax in zip(subjects, axes):

        res_fname = "correlation_analysis/{}_{}_ifs.pkz".format(subj, exp)
        res = moss.load_pkl(res_fname)
        x = res.distance_thresh

        for dim, color, marker in zip(["3D", "2D"], [".5", ".2"], ["x", "+"]):
            same, diff = res.corr_distance[dim].T
            ax.plot(x, same - diff, "o-", color=color, ms=3, clip_on=False)

            sig = res.corr_distance_pctiles[dim] > 95
            stary = -.005 if exp == "dots" else -.0025
            ax.plot(x[sig], np.ones(sig.sum()) * stary,
                    marker=marker, ls="", mew=.35, mec=".2", ms=3)

        ylim = (-.01, .08) if exp == "dots" else (-.005, .04)
        yticks = np.array([0, .01, .02, .03, .04])
        yticks =  yticks * 2 if exp == "dots" else yticks
        ax.set(xlim=(-2, 42), ylim=ylim, yticks=yticks)
        sns.despine(ax=ax, trim=True)

    ylabel = "Subnetwork strength\n($r_{\mathrm{same}} - r_{\mathrm{diff}}$)"
    plt.setp(axes[1:7], yticklabels=[])
    axes[0].set_ylabel(ylabel)

    if exp == "dots":
        plt.setp(axes[8:], yticklabels=[])
        plt.setp(axes[:7], xticklabels=[])
        axes[7].set_ylabel(ylabel)
figure_1.py 文件源码 项目:Waskom_PNAS_2017 作者: WagnerLabPapers 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_swarms(df, axes, palette):

    for exp, ax in zip(["dots", "sticks"], axes):

        exp_df = df.query("experiment == @exp")

        ax.axhline(.5, .1, .9, dashes=(5, 2), color=".6")        
        ax.set(ylim=(.4, .9), yticks=[.4, .5, .6, .7, .8, .9])

        sns.pointplot(x="roi", y="acc", data=exp_df,
                      palette=palette, join=False, ci=None, ax=ax)
        points_to_lines(ax, lw=3)

        sns.swarmplot(x="roi", y="acc", data=exp_df, size=4,
                      color=".85", # facecolor="none",
                      linewidth=1, edgecolor=".4", ax=ax)

        ax.set(xlabel="", ylabel="", xticklabels=["IFS", "MFC"])

    ax_l, ax_r = axes
    ax_l.set(ylabel="Decoding accuracy")
    ax_r.set(yticks=[])

    ax_l.text(.5, .91, "Experiment 1", ha="center", va="center", size=7.5)
    ax_r.text(.5, .91, "Experiment 2", ha="center", va="center", size=7.5)

    sns.despine(ax=ax_l, trim=True)
    sns.despine(ax=ax_r, left=True, trim=True)
figure_2.py 文件源码 项目:Waskom_PNAS_2017 作者: WagnerLabPapers 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_cluster_error(ax):

    res_ftemp = "spatial_analysis/{}_{}_ifs.pkz"
    for exp in ["dots", "sticks"]:

        subjects = get_subject_order(exp)
        color = get_colormap(exp, as_cmap=False)[20]

        errs = []
        for subj in subjects:

            res = moss.load_pkl(res_ftemp.format(subj, exp))
            x = res.steps

            norm = res.null.mean()
            errs.append(res.real / norm)

        errs = np.vstack(errs)
        mean = errs.mean(axis=0)
        ax.plot(x, mean, color=color, lw=2)
        sem = stats.sem(errs, axis=0)
        ax.fill_between(x, mean - sem, mean + sem, alpha=.2, color=color)


    ax.axhline(y=1, lw=1, dashes=[5, 2],
               color=".5", zorder=0,
               xmin=.02, xmax=.98)

    ax.set(xlim=(0, 42),
           ylim=(.55, 1.45),
           yticks=[.6, .8, 1, 1.2, 1.4],
           xticks=[0, 10, 20, 30, 40],
           xlabel="Neighborhood radius (mm)",
           ylabel="Normalized error")

    sns.despine(ax=ax, trim=True)
sup_figure_6.py 文件源码 项目:Waskom_PNAS_2017 作者: WagnerLabPapers 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_corrmats(subjects, axes, exp):

    for subj, ax in zip(subjects, axes):

        fname = "correlation_analysis/{}_{}_ifs.pkz".format(subj, exp)
        corrmat = moss.load_pkl(fname).corrmat

        ax.imshow(corrmat - np.eye(len(corrmat)),
                  cmap="RdBu_r", vmin=-.15, vmax=.15,
                  rasterized=True)

        ax.set(xticks=[], yticks=[])
        sns.despine(ax=ax, left=True, bottom=True)
sup_figure_6.py 文件源码 项目:Waskom_PNAS_2017 作者: WagnerLabPapers 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_scatters(subjects, axes):

    ftemp = "correlation_analysis/{}_{}_ifs.pkz"
    for subj, ax in zip(subjects, axes):

        sticks = moss.load_pkl(ftemp.format(subj, "sticks")).corrmat
        rest = moss.load_pkl(ftemp.format(subj, "rest")).corrmat

        triu = np.triu_indices_from(rest, 1)

        ax.scatter(sticks[triu], rest[triu], s=3, linewidth=.2,
                   color=".6", edgecolor="w",
                   rasterized=True)

        ax.plot([-.2, .8], [-.2, .8], lw=1, dashes=(5, 2), color=".3")

    plt.setp(axes,
             xlim=(-.25, .8), ylim=(-.25, .8),
             xticks=np.linspace(-.2, .8, 6),
             yticks=np.linspace(-.2, .8, 6),
             aspect="equal")
    plt.setp(axes[1:], yticklabels=[])
    for ax in axes:
        sns.despine(ax=ax, trim=True)
        plt.setp(ax.get_xticklabels(), size=6)
        plt.setp(ax.get_yticklabels(), size=6)
sup_figure_6.py 文件源码 项目:Waskom_PNAS_2017 作者: WagnerLabPapers 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_kdes(subjects, axes):

    ftemp = "correlation_analysis/{}_{}_ifs.pkz"
    for subj, ax in zip(subjects, axes):

        sticks = moss.load_pkl(ftemp.format(subj, "sticks")).corrmat
        rest = moss.load_pkl(ftemp.format(subj, "rest")).corrmat

        triu = np.triu_indices_from(rest, 1)

        sns.kdeplot(sticks[triu], color=".15",
                    label="residual", ax=ax)
        sns.kdeplot(rest[triu], color=".45", dashes=[4, 1],
                    label="resting", ax=ax)

    plt.setp(axes,
             xlim=(-.25, .8), ylim=(0, 17),
             xticks=np.linspace(-.2, .8, 6),
             yticks=[])

    for ax in axes:
        sns.despine(ax=ax, left=True, trim=True)
        plt.setp(ax.get_xticklabels(), size=6)
        plt.setp(ax.get_yticklabels(), size=6)

    axes[0].legend(bbox_to_anchor=(1.2, .8))
    for ax in axes[1:]:
        ax.legend_ = None
plot_functions.py 文件源码 项目:idea_relations 作者: Noahs-ARK 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def start_plotting(fig_size, fig_pos, style="white", rc=None, despine=False):
    with sns.axes_style(style, rc):
        fig = plt.figure(figsize=fig_size)
        if not fig_pos:
            ax = fig.add_subplot(111)
        else:
            ax = fig.add_axes(fig_pos)
    if despine:
        sns.despine(left=True)
    return fig, ax
jmultidk_notf.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def plot_box( self, fname_out = None):      
        sns.boxplot(x="Method", y="r2", data=self.df_best_expand, palette="PRGn")
        sns.despine(offset=10, trim=True)
        plt.ylabel( r"$r^2$")
        plt.xlabel( "Methods")

        if fname_out is not None:
            plt.savefig( fname_out) # index should be stored.
        elif self.fname is not None:
            fname_out = self.fname[:-4] + '_box.eps'
            print( 'Default: the figure of self.df_best_expand is saved to', fname_out)
            plt.savefig( fname_out)
jmultidk.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def plot_box( self, fname_out = None):      
        sns.boxplot(x="Method", y="r2", data=self.df_best_expand, palette="PRGn")
        sns.despine(offset=10, trim=True)
        plt.ylabel( r"$r^2$")
        plt.xlabel( "Methods")

        if fname_out is not None:
            plt.savefig( fname_out) # index should be stored.
        elif self.fname is not None:
            fname_out = self.fname[:-4] + '_box.eps'
            print( 'Default: the figure of self.df_best_expand is saved to', fname_out)
            plt.savefig( fname_out)
jseaborn.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def boxplot_expension( pdr, method_l, x="Group", y="RP", hue="Method"):
    # method_l = ['No_Regression', 'Mean_Compensation', 'Linear', 'Exp']
    val_s = y
    pdw = expension_4_boxplot( pdr, method_l, x=x, y=y, hue=hue)
    sns.boxplot(x="Group", y=val_s, hue="Method", data=pdw, palette="PRGn")
    sns.despine(offset=10, trim=True)
helpers.py 文件源码 项目:VASC 作者: wang-research 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def print_2D( points,label,id_map ):
    '''
    points: N_samples * 2
    label: (int) N_samples
    id_map: map label id to its name
    '''  
    fig = plt.figure()
    #current_palette = sns.color_palette("RdBu_r", max(label)+1)
    n_cell,_ = points.shape
    if n_cell > 500:
        s = 10
    else:
        s = 20

    ax = plt.subplot(111)
    print( np.unique(label) )
    for i in np.unique(label):
        ax.scatter( points[label==i,0], points[label==i,1], c=current_palette[i], label=id_map[i], s=s,marker=markers_keys[i] )
    box = ax.get_position()
    ax.set_position([box.x0, box.y0 + box.height * 0.1,
                     box.width, box.height * 0.9])

    ax.legend(scatterpoints=1,loc='upper center',
              bbox_to_anchor=(0.5,-0.08),ncol=6,
              fancybox=True,
              prop={'size':8}
              )
    sns.despine()
    return fig
figs.py 文件源码 项目:extract 作者: dblalock 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def makeMsrcFig(ax=None, save=True):
    ts = getGoodMsrcTs()
    ax = ts.plot(showLabels=False, showBounds=False, ax=ax)
    sb.despine(left=True)
    ax.set_title("MSRC-12", y=TITLE_Y_POS)
    # ax.set_xlabel("Time (sample)")
    plt.tight_layout()
    if save:
        saveFigWithName('msrc')

# ------------------------------------------------ UCR
figs.py 文件源码 项目:extract 作者: dblalock 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def makeUcrFig(ax=None, save=True):
    ts = getGoodUcrTs()
    ax = ts.plot(showLabels=False, showBounds=False, ax=ax, linewidths=3.)
    sb.despine(left=True)
    ax.set_title("UCR", y=TITLE_Y_POS)
    # ax.set_xlabel("Time (sample)")
    plt.tight_layout()
    if save:
        saveFigWithName('ucr')

# ------------------------------------------------ Tidigits

# @memory.cache
figs.py 文件源码 项目:extract 作者: dblalock 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def makeTidigitsFig(ax=None, save=True, whichTs=-1):
    ts = getGoodTidigitsTs(whichTs=whichTs)
    # ts.data = ar.meanNormalizeCols(ts.data)
    ax = ts.plot(showLabels=False, showBounds=False, ax=ax, linewidths=3.)
    sb.despine(left=True)
    ax.set_title("TIDIGITS", y=TITLE_Y_POS)
    # ax.set_xlabel("Time (sample)")
    plt.tight_layout()
    if save:
        saveFigWithName('tidigits')

# ------------------------------------------------ Combined


问题


面经


文章

微信
公众号

扫码关注公众号