python类distplot()的实例源码

plot.py 文件源码 项目:vinci 作者: Phylliade 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def action_distribution(actions, ax=None, file="action_ditribution.png"):
    plt.figure(figsize=(10, 10))
    sb.distplot(actions, kde=False, ax=ax)
    plt.ylabel("probability")
    plt.xlabel("action")
    plt.title("Action distribution")
    plt.savefig(file)
    plt.close()
plot_distribution.py 文件源码 项目:importance-sampling 作者: idiap 项目源码 文件源码 阅读 54 收藏 0 点赞 0 评论 0
def update(data, ax, xlim, ylim, vl):
    ax.clear()
    sns.distplot(data, ax=ax)
    if xlim:
        ax.set_xlim(xlim)
    if ylim:
        ax.set_ylim(ylim)

    if vl is not None:
        ax.plot([vl, vl], ax.get_ylim(), "k--")

    return ax
test_matplotlib_utilities.py 文件源码 项目:data_utilities 作者: fmv1992 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def generate_test_figures_2d_histogram(cls):
        """generate_test_figures_2d_histogram class method.

        Generate a tuple of 2d histogram figures.

        """
        # Create series. Will be divided by more than //2 when all plots are
        # ready.
        def dist_function01(): return np.random.normal(
            size=cls.n_lines_test_pandas)

        def dist_function02(): return np.random.randint(
            0,
            99999) * np.arange(cls.n_lines_test_pandas)

        def dist_function03(): return np.random.randint(
            0,
            99999) * np.ones(cls.n_lines_test_pandas)
        dist_functions = (dist_function01, dist_function02, dist_function03)
        iterable_of_series = (pd.Series(np.random.choice(dist_functions)())
                              for _ in range(cls.n_graphical_tests//2))

        # Create figures from series.
        figures = tuple(map(
            cls.figure_from_plot_function,
            itertools.repeat(lambda x: sns.distplot(x, kde=False)),
            iterable_of_series))

        return figures
matplotlib_utilities.py 文件源码 项目:data_utilities 作者: fmv1992 项目源码 文件源码 阅读 93 收藏 0 点赞 0 评论 0
def histogram_of_floats(a,
                        *args,
                        **sns_distplot_kwargs):
    """Plot a histogram of floats with sane defauts.

    Arguments:
        a (pd.Series): Float series to create a histogram plot.

    Returns:
        matplotlib.axes.Axes: the plotted axes.

    Examples:
        >>> import pandas_utilities as pu
        >>> float_serie = pu.dummy_dataframe().float_0
        >>> fig = plt.figure()
        >>> axes = histogram_of_floats(float_serie, kde=False)
        >>> isinstance(axes, matplotlib.axes.Axes)
        True
        >>> fig.savefig('/tmp/doctest_{0}.png'.format(                        \
        'histogram_of_floats'), dpi=500)

    """
    axes = sns.distplot(
        a,
        *args,
        **sns_distplot_kwargs)
    return axes
train.py 文件源码 项目:tensorflow_kaggle_house_price 作者: Cuongvn08 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def display_distrib(pd, feature):
    plt.figure()
    sns.distplot(pd[feature].dropna() , fit=norm);
    (mu, sigma) = norm.fit(pd[feature].dropna())    

    plt.legend(['Normal dist. ($\mu=$ {:.2f} and $\sigma=$ {:.2f} )'.format(mu, sigma)], loc='best')
    plt.ylabel('Frequency')
    plt.title('SalePrice distribution')
    plt.show()
utils.py 文件源码 项目:mriqc 作者: poldracklab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def plot_fd(fd_file, fd_radius, mean_fd_dist=None, figsize=DINA4_LANDSCAPE):

    fd_power = _calc_fd(fd_file, fd_radius)

    fig = plt.Figure(figsize=figsize)
    FigureCanvas(fig)

    if mean_fd_dist:
        grid = GridSpec(2, 4)
    else:
        grid = GridSpec(1, 2, width_ratios=[3, 1])
        grid.update(hspace=1.0, right=0.95, left=0.1, bottom=0.2)

    ax = fig.add_subplot(grid[0, :-1])
    ax.plot(fd_power)
    ax.set_xlim((0, len(fd_power)))
    ax.set_ylabel("Frame Displacement [mm]")
    ax.set_xlabel("Frame number")
    ylim = ax.get_ylim()

    ax = fig.add_subplot(grid[0, -1])
    sns.distplot(fd_power, vertical=True, ax=ax)
    ax.set_ylim(ylim)

    if mean_fd_dist:
        ax = fig.add_subplot(grid[1, :])
        sns.distplot(mean_fd_dist, ax=ax)
        ax.set_xlabel("Mean Frame Displacement (over all subjects) [mm]")
        mean_fd = fd_power.mean()
        label = r'$\overline{{\text{{FD}}}}$ = {0:g}'.format(mean_fd)
        plot_vline(mean_fd, label, ax=ax)

    return fig
datasetstats.py 文件源码 项目:eqnet 作者: mast-group 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def plot_distribution(data, title):
    data = np.array([d for d in data])
    sns.distplot(data, rug=True)
    plt.title(title)
    plt.show()
dcpg_filter_motifs.py 文件源码 项目:deepcpg 作者: cangermueller 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_filter_densities(densities, filename=None):
    sns.set(font_scale=1.3)
    fig, ax = plt.subplots()
    sns.distplot(densities, kde=False, ax=ax)
    ax.set_xlabel('Activation')
    if filename:
        fig.savefig(filename)
        plt.close()
main.py 文件源码 项目:xplore 作者: fahd09 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def explore_feature_variation(self, col=None, use_target=False, **kwargs):
        '''
        Produces univariate plots of a given set of columns. Barplots are used
        for categorical columns while histograms (with fitted density functinos)
        are used for numerical columns.

        If use_target is true, then the variation of the given set of columns
        with respect to the response variable are used (e.g., 2d scatter 
        plots, boxplots, etc).

        Parameters
        ----------
        col : a string of a column name, or a list of many columns names or
                None (default). If col is None, all columns will be used.
        use_target : bool, default False
            Whether to use the target column in the plots.
        **kwargs: additional arguments to be passed to seaborn's distplot or
            to pandas's plotting utilities..
        '''            
        self._validate_params(params_list   = {'col':col},
                              expected_types= {'col':[str,list,type(None)]})        


        if type(col) is str: col = [col]
        if col is None: col = self._get_all_features()
        if use_target == False:
            for column in col:
                if self.is_numeric(self.df[column]) == True:
                    plt.figure(column)
                    #sns.despine(left=True)        
                    sns.distplot(self.df[column], color="m", **kwargs) 
                    plt.title(column)
                    plt.tight_layout()            
                    #plt.figure('boxplot')
                    #sns.boxplot(x=self.df[col], palette="PRGn")
                    #sns.despine(offset=10, trim=True)     
                elif self.is_categorical(self.df[column]) == True:            
                    #print self.df[column].describe()
                    plt.figure(column)
                    #sns.despine(left=True)    
                    if len(self.df[column].unique()) > 30:
                        self.df[column].value_counts()[:20][::-1].plot.barh(**kwargs)
                        #top = pd.DataFrame(data=top)
                        #sns.barplot(y=top.index, x=top)                        
                    else:
                        self.df[column].value_counts()[::-1].plot.barh(**kwargs)
                        #sns.countplot(y=self.df[column])                    
                    plt.title(column)
                    plt.tight_layout()
                else:
                    raise TypeError('TYPE IS NOT SUPPORTED')
        else: # use target variable
            for column in col:
                self.explore_features_covariation(col1=column, col2=self.y, **kwargs)
evaluation.py 文件源码 项目:syracuse_public 作者: dssg 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def plot_score_distribution(y_pred, so):
    """ Plots scores of predicted values """
    min_x = min(min(y_pred), 0)
    max_x = max(max(y_pred), 1)
    sns.distplot(y_pred, kde=False)
    plt.title("distribution of scores for {} model".format(so['model_name']))
    plt.xlabel("raw prediction score")
    plt.xlim([min_x, max_x])
    plt.ylabel("number of street segments")
    base = so['results_dir'] + so['model_name'] + "_" + \
        str(so['timestamp']) + "_" + so['break_window']
    plt.savefig(base + '_score_distribution.png', bbox_inches='tight')
    plt.close()
sentisignal.py 文件源码 项目:sentisignal 作者: jonathanmanfield 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def plot_pdf(df):
    df_num = df.select_dtypes(include=[np.float, np.int])

    # rows = df_num / 3

    # f, axes = plt.subplots(3, rows + 1)

    # print axes

    for index in df_num.columns:
        try:
            sns.distplot(df_num[index], color="m")
        except:
            print index, "error (probably Nan)"
tbs_plot.py 文件源码 项目:eezzy 作者: 3Blades 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def continuous_plots(dataFrame, continuous_factors):
    plots = plt.subplots(len(continuous_factors), 2, figsize=(8,12))
    column = 0
    for factor in continuous_factors:
        sns.distplot(dataFrame[factor],ax=plots[1][0][column], label=factor)
        plots[1][0][column].legend()
        column += 1
    plt.tight_layout()
boston_housing.py 文件源码 项目:SCFGP 作者: MaxInGaussian 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_dist(*args):
    import seaborn as sns
    for x in args:
        plt.figure()
        sns.distplot(x)
    plt.show()
CO2_1d_regression.py 文件源码 项目:SCFGP 作者: MaxInGaussian 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def plot_dist(*args):
    import seaborn as sns
    for x in args:
        plt.figure()
        sns.distplot(x)
    plt.show()
demos.py 文件源码 项目:bayesian_bootstrap 作者: lmc2179 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def plot_mean_bootstrap():
    X = [-1, 0, 1]
    posterior_samples = mean(X, 10000)
    sns.distplot(posterior_samples)
    classical_samples = [np.mean(resample(X)) for _ in range(10000)]
    sns.distplot(classical_samples)
    plt.show()
demos.py 文件源码 项目:bayesian_bootstrap 作者: lmc2179 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot_mean_resample_bootstrap():
    X = [-1, 0, 1]
    posterior_samples = bayesian_bootstrap(X, np.mean, 10000, 100)
    sns.distplot(posterior_samples)
    classical_samples = [np.mean(resample(X)) for _ in range(10000)]
    sns.distplot(classical_samples)
    plt.show()
demos.py 文件源码 项目:bayesian_bootstrap 作者: lmc2179 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def plot_median():
    X = np.random.uniform(-1, 1, 10)
    posterior_samples = bayesian_bootstrap(X, np.median, 10000, 100)
    sns.distplot(posterior_samples)
    classical_samples = [np.median(resample(X)) for _ in range(10000)]
    sns.distplot(classical_samples)
    plt.show()
demos.py 文件源码 项目:bayesian_bootstrap 作者: lmc2179 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def plot_var_bootstrap():
    X = np.random.uniform(-1, 1, 100)
    posterior_samples = var(X, 10000)
    sns.distplot(posterior_samples)
    classical_samples = [np.var(resample(X)) for _ in range(10000)]
    sns.distplot(classical_samples)
    plt.show()
demos.py 文件源码 项目:bayesian_bootstrap 作者: lmc2179 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_self_covar_bootstrap():
    X = np.random.uniform(-1, 1, 100)
    posterior_samples = covar(X, X, 10000)
    sns.distplot(posterior_samples)
    plt.show()
demos.py 文件源码 项目:bayesian_bootstrap 作者: lmc2179 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def plot_var_resample_bootstrap():
    X = np.random.uniform(-1, 1, 100)
    posterior_samples = bayesian_bootstrap(X, np.var, 10000, 500)
    sns.distplot(posterior_samples)
    classical_samples = [np.var(resample(X)) for _ in range(10000)]
    sns.distplot(classical_samples)
    plt.show()


问题


面经


文章

微信
公众号

扫码关注公众号